K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Ôn tập cuối năm phần hình học

18 tháng 4 2021

\(\Delta BKA\) có NI song song KC và N trung điểm AB

suy ra: I là trung điểm BK

Vì AH song song KB (cùng vuông góc BC)

nên : \(\dfrac{OH}{IB}=\dfrac{OA}{IK}\left(=\dfrac{CO}{CI}\right)\)

Mà : IB = IK (cmt)

suy ra : OH = OA mà NB = NA (gt)

suy ra: ON là đường trung bình \(\Delta BAH\)

hay : ON // BH hay ON // BC

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE ....
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do ABAC,HEAB,HFACAB⊥AC,HE⊥AB,HF⊥AC

ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o

AEHF→◊AEHF là hình chữ nhật

AH=EF

Mấy câu khác chưa học !

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

21 tháng 4 2018

  A B C H D E

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

Áp dụng tính chất tia phân giác trong tam giác ta có:

\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)

mà AD + DC = AC = 16 cm nên \(AD=6cm.\)

c) Xét tam giác BEA và tam giác BDC có:

\(\widehat{ABE}=\widehat{CBD}\)  (BD là tia phân giác)

\(\widehat{BAE}=\widehat{BCD}\)  (Cùng phụ với góc \(\widehat{ABC}\)  )

\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)

Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)  

17 tháng 8 2018

Bài giải : 

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

^BHA=^BAC(=90o)

⇒ΔHBA∼ΔABC(g−g)

⇒HBAB =ABCB ⇒AB2=BH.BC

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

BC=√AB2+AC2=20(cm)

Áp dụng tính chất tia phân giác trong tam giác ta có:

ADDC =ABBC =1220 =35 

mà AD + DC = AC = 16 cm nên AD=6cm.

c) Xét tam giác BEA và tam giác BDC có:

^ABE=^CBD  (BD là tia phân giác)

^BAE=^BCD  (Cùng phụ với góc ^ABC  )

⇒ΔBEA∼ΔBDC(g−g)

⇒BEBD =ABCB 

Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA   

18 tháng 3 2021

A B C H M I N

a, Xét tam giác AHM và tam giác ACH ta có : 

^H = ^HMA = 900

^A _ chung 

Vậy tam giác AHM ~ tam giác ACH ( g.g )

\(\Rightarrow\frac{AH}{AC}=\frac{AM}{AH}\)( tỉ số đồng dạng ) \(\Rightarrow AH^2=AM.AC\)

b, đề sai ko ?