K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Chứng minh

a, Xét \(\Delta MAB\)\(\Delta MDC\) có :

MA = MD (gt)

\(\widehat{AMB}=\widehat{DMC}\) ( đối đỉnh )

MB = MC (gt)

\(\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\)

b, \(\Delta MAB=\Delta MDC\) (câu a)

\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) ( ở vị trí so le trong)

\(\Rightarrow\) AB // CD

\(\Rightarrow\widehat{BAC}+\widehat{ACD}=180^O\)

\(\Rightarrow90^O+\widehat{ACD}=180^O\)

\(\Rightarrow\widehat{ACD}=90^O\)

\(\Rightarrow\Delta ACD\) vuông tại C

24 tháng 4 2017

câu c nè ( hơi lằng nhằng chút nha )

Chứng minh

c, \(\Delta MAB=\Delta MDC\) ( câu a )

\(\Rightarrow AB=CD\) ( hai cạnh tương ứng )

Xét \(\Delta KAB\)\(\Delta KCD\) có :

AK = CK (gt)

\(\widehat{KAB}=\widehat{KCD}\) (=1v)

AB = CD (c/m trên)

\(\Rightarrow\Delta KAB=\Delta KCD\) (c.g.c)

\(\Rightarrow KB=KD\) (hai cạnh tương ứng)

\(\widehat{AKB}=\widehat{CKD}\) (hai góc tương ứng)

\(\Rightarrow\widehat{AKB}+\widehat{BKD}=\widehat{CKD}+\widehat{BKD}\) hay \(\widehat{AKD}=\widehat{CKB}\)

Xét \(\Delta AKD\)\(\Delta CKB\) có :

AK = CK (gt)

\(\widehat{AKD}=\widehat{CKB}\) (c/m trên )

KD = KB ( c/m trên )

\(\Rightarrow\Delta AKD=\Delta CKB\) (c.g.c)

\(\Rightarrow\widehat{ADK}=\widehat{CBK}\) ( hai góc tương ứng )

Xét \(\Delta IKB\)\(\Delta NKD\) có :

\(\widehat{BKD}\) chung

KB = KD (c/m trên )

\(\widehat{KBI}=\widehat{KDN}\) (c/m trên )

\(\Rightarrow\Delta IKB=\Delta NKD\) (g.c.g)

\(\Rightarrow KI=KN\) (hai cạnh tương ứng )

\(\Rightarrow\Delta KIN\) cân

10 tháng 7 2017

B A C M K H G I

a) Xét hai tam giác MHB và MKC có:

MB = MC (gt)

Góc HMB = góc KMC (đối đỉnh)

MH = MK (gt)

Vậy: tam giác MHB = tam giác MKC (c - g - c)

c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

=> Tam giác MAB cân tại M

=> MH là đường cao đồng thời là đường trung tuyến

hay HB = HA

=> CH là đường trung tuyến ứng với cạnh AB

Hai đường trung tuyến AM và CH cắt nhau tại G

=> G là trọng tâm của tam giác ABC

Mà BI đi qua trọng tâm G (G thuộc BI)

Do đó BI là đường trung tuyến còn lại

hay I là trung điểm của AC (đpcm).

3 tháng 3 2017

A B C M H N K

a) Xét \(\Delta ABM\)\(\Delta ACM\) có:

AB = AC (\(\Delta ABC\) cân tại A)

AM chung

BM = CM (suy từ gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

hay \(\widehat{HBM}=\widehat{KCM}\)

Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;

BM = CM

\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)

\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)

c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)

\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)

\(\Delta ABM=\Delta ACM\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)

\(\Rightarrow\Delta ABM\) vuông tại M

Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM^2=17^2-8^2\)

\(\Rightarrow AM^2=15^2\)

\(\Rightarrow AM=15\)

Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)

Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).

27 tháng 3 2017

A B C D M K F E N O

cau a:CB;AN là trung tuyến ;CB/MB=2/3

​> M trọng tâm tam giác ACD > vậy A;M;N thẳng hàng

câu b:DM là đường trung tuyến thứ 3> K trung diemAC.

​cậu c: tương tự AF;CE;MK đồng qui tại O là trọng tâm tam giác ACM

9 tháng 8 2017

Để mai mk lm giờ pùn ngủ quá ^ ^

10 tháng 8 2017

humlimdimlimdimlimdimlimdim

21 tháng 3 2017

câu hỏi đâu ?

21 tháng 3 2017

ben tren y cho co tu chung minh y

8 tháng 4 2017

A B C M D 1 2

Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)

Giải:

a, ΔABD = ΔACD:

Xét ΔABM và ΔACM có:

+ AB = AC (ΔABC cân tại A)

+ AM là cạnh chung.

+ BM = CM (trung tuyến AM)

=> ΔABM = ΔACM (c - c - c)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)

Xét ΔABD và ΔACD có:

+ AB = AC (ΔABC cân tại A)

+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)

+ AD là cạnh chung.

=> ΔABD = ΔACD (c - g - c)

b, ΔBDC cân:

Ta có: ΔABD = ΔACD (câu a)

=> BD = CD (2 cạnh tương ứng)

=> ΔBDC cân tại D.

8 tháng 4 2017

A B C D M

a) ΔABD=ΔACD

Xét ΔABM và ΔACM ta có:

AB=AC (ΔABC cân tại A)

AM chung

BM=BC (gt)

\(\Rightarrow\)ΔABM = ΔACM (c.c.c)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

Xét ΔABD và ΔACD ta có:

AB=AC (ΔABC cân tại A)

\(\widehat{BAM}=\widehat{CAM}\) (cmt)

AM cạnh chung

\(\Rightarrow\) ΔABD = ΔACD (c.g.c)

b) ΔBDC cân

Vì ΔABD = ΔACD ( theo câu a)

\(\Rightarrow\)BD=DC (2 cạnh tương ứng)

\(\Rightarrow\)ΔBDC cân tại D (đpcm)

16 tháng 11 2017

A B C N M

a, Xét ΔABM và ΔACM ,có :

AB = AC ( gt )

AM : cạnh chung

BM = CM ( gt )

\(\Rightarrow\) ΔABM = ΔACM ( c.c.c )

b, AB = AC

\(\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow\) AN là đường trung tuyến đồng thời là đường cao của ΔABC

Hay AN là phân giác của \(\widehat{BAC}\)

c, Ta có :MB = MC

\(\Rightarrow\) ΔMBC cân tại M

=> MN là đường tủng tuyến đồng thời là đường cao của ΔMBC

\(\Rightarrow MN\perp BC\) (1)

ΔABC cân tại A

=> AN là đường phân giác đồng thời là đường cao

\(\Rightarrow AN\perp BC\) (2)

Từ (1)(2) => A, M , N thẳng hàng