K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC vuông tại A, trung tuyến AM. Biết AB = 5cm, AC = 12 cm, khi đó độ dài trung tuyến AM là:

(1 Point)

6,5 cm

6 cm

5 cm

13 cm

2

Cho tứ giác ABCD, gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Để tứ giác MNPQ là hình chữ nhật khi đó tứ giác ABCD cần thêm điều kiện là:

(1 Point)

AC ⊥ BD

AB = CD

AC = BD

AD = AB

3

Cho hình thang cân ABCD (AB // CD) , biết CD = 12cm, AB = 6cm, AD = 5cm. Khi đó độ dài đường cao hình thang là:

(1 Point)

3 cm

4,5 cm

4 cm

4

Trong các hình vẽ đưới đây, tứ giác là hình bình hành là:

(1 Point)

Tứ giác ABCD, tứ giác IXYZ, tứ giác MNPQ.

Tứ giác ABCD, tứ giác MNPQ, tứ giác TSQR.

Tứ giác ABCD, tứ giác MNPQ.

Cả 4 tứ giác.

5

Cho hình vẽ sau: biết góc ADE = 73 độ, góc ABC = 73 độ , D là trung điểm của AB, AE = 6cm. Khi đó độ dài AC là:

(1 Point)

6 cm

9 cm

12 cm

6

Chọn khẳng định SAI trong các khẳng định sau:

(1 Point)

Đường thẳng đi qua trung điểm 2 cạnh đáy của hình thang là trục đối xứng của hình thang.

Tam giác đều có 3 trục đối xứng

Trục đối xứng của tam giác cân là đường thẳng chứa đường trung tuyến ứng với cạnh đáy của tam giác.

Đường tròn có vô số trục đối xứng

7

Chọn khẳng định SAI trong các khẳng định sau:

(1 Point)

Hình thang có 1 góc vuông là hình chữ nhật.

Hình bình hành có 2 đường chéo bằng nhau là hình chữ nhật.

Hình bình hành có 1 góc vuông là hình chữ nhật.

Tứ giác có 3 góc vuông là hình chữ nhật.

8

Cho hình thang ABCD (AB // CD), biết , AM và BM là các tia phân giác của các góc A và B của hình thang (M thuộc CD). Khi đó chu vi của hình thang ABCD là:

(1 Point)

24 cm

22 cm

23 cm

9

Trong các hình vẽ sau đây, tứ giác là hình thang cân là:

(1 Point)

Tứ giác ABCD, tứ giác MNQP, tứ giác RSTU

Tứ giác ABCD, tứ giác IJKL, tứ giác MNQP

Cả 4 tứ giác

Tứ giác ABCD, tứ giác MNQP

10

Trong các khẳng định sau, khẳng định nào SAI:

Immersive Reader

(1 Point)

2 điểm M và N đối xứng với nhau qua điểm O khi O là trung điểm của MN.

Hai tam giác đối xứng qua 1 điểm thì bằng nhau.

Hình bình hành có 1 tâm đối xứng.

Tâm đối xứng của tam giác đều là trọng tâm của tam giác

Submit

 

1
23 tháng 10 2021

6,5cm

24 tháng 9 2016

a) Xét tam giác ABD có: 

AD = AB (giả thiết)

=> Tam giác ABD là tam giác cân

=> Góc B = góc D (t/chất của tam giác cân)

Có: Q là tr/điểm AD

       M là tr/điểm AB

=> QM // BD (t/chất đg tr/bình của tam giác)

=>Tứ giác QMBD là hình thang

Mà: Góc B = góc D (tam giác ABD là tam giác cân)

=> Hình thang QMBD là hình thang cân

P/s: Mình giải đến đây thôi. Mình thấy câu b "có j đó sai sai"?! Chẳng phải ở trên đã nói M là tr/điểm của AB rồi sao?! Sao ở câu b lại nói I là tr/điểm của AB?! Mình chưa giải câu c vì mik nghĩ đáp án câu b có thế sẽ là manh mối để giải câu c. Mình mong nếu bạn viết nhầm thì mau mau sửa lại để mik giải tiếp!!!! Thân.vui

26 tháng 9 2016

chết mình nhầm! I là trung điểm của AC đó bạn!

21 tháng 12 2018

giúp mình với sắp thi rồi

7 tháng 8 2019

A B C D M N P Q

a

Do:

MQ là đường trung bình của tam giác ABD nên MQ//BD và MQ=BD/2 (1)

NP là đường trung bình của tam giác CBD nên NP//BD và NP=BD/2 (2)

Từ (1) và (2) suy ra điều phải chứng minh ( có 2 cặp cạnh đối song song và bằng nhau )

b

MNPQ là hình chữ nhật nên QM vuông góc với MN.

Khi đó AC vuông góc với BD.

Vậy hình thang ABCD cần thêm điều kiện AC vuông góc với BD thì MNPQ là hình chữ nhật.

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng. 
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

3
14 tháng 6 2017

bài 3:

D,                 bài giải 

diện tích là:

                (8x5):2=20(cm2)

                          Đ/S:20cm2

22 tháng 11 2020

Bài 2 : 

A B C D M E

a, Xét tam giác ABC ta có : 

D là trung điểm AB

M là trung điểm CB 

=)) DM là đường TB tam giác ABC 

=)) DM // AC hay DM // AE (1) 

Ta có : E là trung điểm AC 

M là trung điểm BA 

=)) EM là đường TB tam giác ABC 

=)) EM // AB hay EM // AD (2)

 Từ 1;2 =)) Tứ giác ADME là hình bình hành 

b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM 

=)) AM đồng thời là tia phân giác của ^A 

Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)

=)) Tứ giác  ADME là hình thoi 

c, Nếu tam giác ABC vuông tại A => ^A = 90^0

Xét hình bình hành ADME có ^A =90^0

=)) Tứ giác ADME là hình chữ nhật 

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

4
15 tháng 12 2016

2/

a/ hình thang ABCD có

AB // EF

==> AB // KF

xét tam giác ABC có

F là trung điểm của BC

AB // KF

==> KF là đường trung bình của tam giác ABC

==> K là trung điểm của AC

==> AK = KC

b/

E là trung điểm AD

F là trung điểm BC

==> EF là đường trung bình của hình thang ABCD

==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)

KF là đường trung bình của tam giác ABC nên

KF = AB / 2 = 4 / 2 = 2(cm)

==> EK = EF - KF = 7 - 2 = 5(cm)

vậy EK = 5(cm), KF = 2 (cm)

3/

a/ ta có

D là trung điểm của AB

M là trung điểm của BC

==> DM là đường trung bình của tam giác ABC

==> Dm // AC

==> DM // AE ( E thuộc AC, DM // AC)

chứng minh tương tự ta có

ME là đường trung bình của tam giác ABC

==> AD // ME

tứ giác ADME có DM // AE, AD // ME nên là HBH

b/ ( nếu tam giác ABC cân tại A)

tam giác ABC cân tại A ==> AB = AC

AD = 1/2 AB (D là trung điểm của AB)

AE = 1/2 AC (E là trung điểm của AC)

==> AD = AE

c/ (nếu tam giác ABC vuông)

ta có

tứ giác ADME là HBH

góc A = 90 độ

==> tứ giác ADME là HCN

d/ ta có

AB^2 + AC^2 = BC^2

6^2 + 8^2 = 100

==> BC = 10(cm)

AM là đường trung tuyến của tam giác ABC

==> AM = 1/2 BC = 1/2 . 10 = 5(cm)

vậy AM = 5cm

 

31 tháng 1 2017

Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé

Ôn tập toán 8

Bài 3:

Ôn tập toán 8

Bài 4:

Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)

Bài 5:

Ôn tập toán 8