Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC và MNC có :
AC= CM (gt)
CN=Cb (gt)
Góc ACB= góc NCM ( đối đỉnh)
=> tam giác ABC = tam giác MNC ( c-g-c)
Bạn kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
a) Xét tam giác ABC và tam giác MNC ta có:
MC=AC ( gt)
BC=NC (gt)
góc NCM = góc BCA ( 2 góc đối đỉnh )
=> tam giác ABC = tam giác MNC ( c.g.c)
b) => góc BAC = góc NMC ( 2 góc tương ứng )
<=> góc NMC=90 độ ( góc BAC=90 độ )
<=> \(AM\perp MN\)
đpcm
c) Tạo hình: gọi D là giao điểm của CE và MN
Có tam giác ABC = tam giác MNC
=> góc EBC= góc DNC ( 2 góc tương ứng )
Tự c/m: tam giác NDC = tam giác BEC ( g.c.g)
=> ND=BE ( 2 cạnh tương ứng )
tam giác AEC = tam giác MDC ( c.g.c )
=> MD=AE ( 2 cạnh tương ứng )
Lại có: AE=BE ( gt )
=> ND=MD
=> D là trung điểm của MN
=> CE đi qua trung điểm MN
đpcm
a) Xét \(\Delta ABC\) và \(\Delta MNC\), ta có:
BC=NC (gt)
\(\widehat{BAC}=\widehat{NCM}\) (đối đỉnh)
AC=CM (gt)
\(\Rightarrow\Delta ABC=\Delta MNC\) (c-g-c)
b) Vì \(\Delta ABC=\Delta MNC\) nên \(\widehat{BAC}=\widehat{CMN}=90^0\) ( 2 góc tương ứng)
hay \(AM\perp MN\)
c) Ta có: A,C,M thẳng hàng nên \(\widehat{ACE}+\widehat{ECM}=180^0\) (kề bù)
mà \(\widehat{ACE}=\widehat{OCM}\) ( đối đỉnh)
\(\Rightarrow\widehat{OCM}+\widehat{ECM}=180^0\)
\(\Rightarrow\) ba điểm E,C,O thẳng hàng
hay CE đi qua trung điểm của đoạn thẳng MN
nek bn ơi cần phải chứng minh 3 điểm A , C , M thẳng hàng nữa chứ
a.2ab=am+an
=> 2ab=am+ac+cn
=> ....=am+ab+cn
=> ab=am+cn
=> am+bn=am+cn
=> bm = cn
b. BC cắt MN tại I
vẽ NE // BC ( e thuộc ab kéo dài )
suy ra gốc aABC = gốc AEN
gốc AEN = góc ABC
mà góc ABC = góc ACB ( ABC cân tại A)
hình thang BCNE là hình thang cân
=> CN = BE
mà CN = BM ( câu a )
=> Bm = BE
BI // NE
BI là đường trung bình MNE=> MI=IN
k mk nhá tks bn
a.2ab=am+an
=> 2ab=am+ac+cn
=> ....=am+ab+cn
=> ab=am+cn
=> am+bn=am+cn
=> bm = cn
b. BC cắt MN tại I
vẽ NE // BC ( e thuộc ab kéo dài )
suy ra gốc aABC = gốc AEN
gốc AEN = góc ABC
mà góc ABC = góc ACB ( ABC cân tại A)
hình thang BCNE là hình thang cân
=> CN = BE
mà CN = BM ( câu a )
=> Bm = BE
BI // NE
BI là đường trung bình MNE=> MI=IN
2: Xét tứ giác ABDE có
C là trung điểm của BE
C là trung điểm của AD
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
a,Ta có:
\(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung
\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )
b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:
AH = HM (gt)
\(\widehat{AHC}\)= \(\widehat{MHC}\)(= 90 độ)
HC : cạnh chung
\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)
\(\Rightarrow\)AC=CM ( t/ứ)
Mà AC = CN (gt) và CM = AC (cmt)
nên CM = CN
\(\Rightarrow\Delta CMN\)cân
gọi F là giao của CE với MN
ta có góc ECA= góc FCM ( vì đối đỉnh)
góc EAC= góc FMC = 90 độ
AC=CM
=> tam giác EAC= tam giác FMC => EA=FM mà EA = 1/2 BA ( vì E là trung điểm AB)=> FM = 1/2 AB
do tam giác NMC= tam giác BAC => BA= MN
=> FM=1/2 MN => F là trung điểm của MN => EC đi qua trung điểm MN