K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2020

A B C D M 1 2 3 4

A) XÉT \(\Delta BDA\)\(\Delta BCA\)

\(DA=CA\left(GT\right)\)

\(\widehat{BAD}=\widehat{BAC}=90^o\)

AB LÀ CẠNH CHUNG

\(\Rightarrow\Delta BDA=\Delta BCA\left(C-G-G\right)\)

=>\(\widehat{B_1}=\widehat{B_2}\)

=> BA LÀ PHÂN GIÁC CỦA \(\widehat{CBD}\)

B)

TA CÓ

 \(\widehat{B_2}+\widehat{B_4}=180^o\left(KB\right)\)

\(\widehat{B_1}+\widehat{B_3}=180^o\left(KB\right)\)

MÀ \(\widehat{B_1}=\widehat{B_2}\)

\(\Rightarrow\widehat{B_4}=\widehat{B_3}\)

XÉT \(\Delta MBD\)\(\Delta MBC\)

MB LÀ CẠNH CHUNG

\(\widehat{B_4}=\widehat{B_3}\left(CMT\right)\)

\(BD=BC\left(\Delta BDA=\Delta BCA\right)\)

=>\(\Delta MBD\)=\(\Delta MBC\)(C-G-C)

14 tháng 3 2020

GT:cho tam giác vuông ABC ( A vuông)

AC=AD ; DAC thẳng hàng;D khác C

KL: BA là tia phân giác của góc ABD

tam giác MBC=MBD

a), xét tam giác ABC và tam giác ADB có

AC=AD ( gt)

góc CAB=BAD ( đều = 90 độ )

AB cạnh cung

nên tam giác ABC = tam giác ADC (c-g-c)

mà Tam giác ACB = tam giác ADB

=>góc CBA = DBA ( 2 cạnh tương ứng)

mà ba nằm giữa 

=> ba là tia phân giác của góc CBD

b), xét tam giác MBCvàMBD có

MB cạnh chung

Mặt Khác có góc CBA = DBA ( cm a)

mà góc CBA+ CBM=ABD+DBM

=> góc CBM=DBM

CB=BD (cm a)

nên tam giác MBC=MBD (c-g-c)

14 tháng 3 2020

a) Xét tam giác ABC và tam giác ADB có

AC=AD ( gt)

góc CAB=BAD ( đều = 90 độ )

AB cạnh chung

=> tam giác ABC = tam giác ADC (c-g-c)

Mà Tam giác ACB = tam giác ADB

=>góc CBA = DBA ( 2 cạnh tương ứng)

mà BA nằm giữa 

=> BA là tia phân giác của góc CBD

b), xét tam giác MBC và MBD ,có :

MB cạnh chung

Mặt Khác có góc CBA = DBA ( cm a)

mà góc CBA+ CBM=ABD+DBM

=> góc CBM=DBM   

CB=BD (cm a) 

nên tam giác MBC=MBD (c-g-c)

26 tháng 12 2019

hình, giả thiết, kết luận tự vẽ, viết đi

Xét △ABC vuông tại A và △ABD vuông tại A

Có: AC = AD (gt)

    AB là cạnh chung

=> △ABC = △ABD (cgv)

=> ABC = ABD (2 góc tương ứng)

Và BA nằm giữa CBD

=> BA là phân giác của CBD

b, Vì △ABC = △ABD (cmt)

=> BC = BD (2 cạnh tương ứng)

Ta có: CBA + CBM = 180o (2 góc kề bù)

          DBA + DBM = 180o (2 góc kề bù)

Mà ABC = ABD (cmt)

=> CBM = DBM

Xét △CBM và △DBM 

Có: BC = BD (cmt)

    CBM = DBM (cmt)

    BM là cạnh chung

=> △CBM = △DBM (c.g.c)

D B A M C

a) Xét \(\Delta ABC\)\(\Delta ABD\)có:

\(AD=AC\left(gt\right)\)

\(\widehat{BAD}=\widehat{BAC}=90^o\)

\(BA\)là cạnh chung

Do đó \(\Delta ABC=\Delta ABD\left(c.g.c\right)\)

b) Do \(\Delta ABC=\Delta ABD\)(câu a)  nên:

\(BD=BC\)(2 cạnh tương ứng)

\(\widehat{ABD}=\widehat{ABC}\)(2 góc tương ứng)

Xét \(\Delta MBD\)và \(\Delta MBC\)có:

\(BD=BC\)(chứng minh trên)

\(\widehat{ABD}=\widehat{ABC}\)(chứng minh trên)

\(BM\)là cạnh chung

Do đó \(\Delta MBD=\Delta MBC\left(c.g.c\right)\)

20 tháng 4 2020

a) Ta có: AD là tia đối của tia AC mà \(\widehat{BAC}=90^o\Rightarrow\widehat{BAD}=90^o\)

Xét tam giác ABC và tam giác ABD có:

    AB ( cạnh chung )  (1)

    AC = AD ( gt )  (2)

    \(\widehat{BAD}=\widehat{BAC}=90^o\)( cmt )  (3)

Từ (1), (2), (3) => tam giác ABC = tam giác ABD ( c. g. c )

b) Ta có: BC = BD và \(\widehat{CBA}=\widehat{DBA}\)( tam giác ABC = tam giác ABD )

Xét tam giác MBD và tam giác MBC có:

BC = BD ( cmt )  (1)

\(\widehat{CBA}=\widehat{DBA}\)( cmt )  (2)

MB ( cạnh chung )  (3)

Từ (1), (2), (3) => tam giác MBD = tam giác MBC ( c. g. c )

Xong rùi đó.k cho mình nha!

21 tháng 2 2020

Tự vẽ hình nhé ?
a) Vì tam giác ABC vuông tại A (GT)
=> Góc BAC = 90o (ĐN)
Mà góc BAC + góc BAD = 180o (kề bù)
=> Góc BAC = góc BAD = 180o : 2 = 90o (1)
Xét tam giác ABC và tam giác ABD có :
AC = AD (GT)
Góc BAC = góc BAD = 90o (Theo (1))
AB chung 
=> Tam giác ABC = tam giác ABD (c.g.c) (2)
b) Từ (2) => Góc ABC = góc ABD (2 góc tương ứng)
Mà góc ABC + góc MBC = 180o (kề bù)
      góc ABD + góc MBD = 180o (kề bù)
=> Góc MBC = góc MBD (3)
Từ (2) => BC = BD (2 cạnh tương ứng) (4)
Xét tam giác MBD và tam giác MBC có :
BM chung
Góc MBD = góc MBC (Theo (3))
BD = BD (Theo (4))
=> Tam giác MBD = tam giác MBC (c.g.c)
Vậy ...

21 tháng 2 2020

a) Xét tam giác ABC và tam giác ABD có :
AD=AC (GT)
góc BAD = góc BAC (=90 độ)
AB là cạnh chung     
=> tam giác ABC = tam giác ABD (c-g-c)
b) vì tam giác ABC = tam giác ABD (cmt)
=> BD=BC ( 2 cạnh tương ứng)
     góc B1 = góc B2 (2 góc tương ứng)
Xét tam giác MBD và tam giác MBC có :
BD=BC (cmt)
góc B1 = góc B2 (cmt)
BM là cạnh chung 
=>tam giác MBD=tam giác MBC (c-g-c)