K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHK vuông tại H và ΔBAC vuông tại A co

BK=BC

góc KBH chung

=>ΔBHK=ΔBAC

=>KH=AC

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: AE=EH

EH<EC

=>AE<EC

21 tháng 4 2016

B A K H C E

a. Xét tam giác vuông BKH và tam giác vuông BCA có:

+ BK = BC (gt)

+ B là góc chung

=> tam giác vuông BKH = tam giác vuông BCA (cạnh huyền + góc nhọn )

=> KH = AC ( 2 cạnh tương ứng )

b. Theo Cm ý a. ta có :  tam giác vuông BKH = tam giác vuông BCA

=> BA = BH (  2 cạnh tương ứng ) (*)

Xét tam giác vuông BEH và tam giác vuông BEA có:

+ BA = BH ( theo * )

+ Cạnh BE chung

=> Tam giác vuông BEH = tam giác vuông BEA

=> góc ABE = góc HBE ( 2 góc tương ứng )

c.tự làm nhé :)

21 tháng 4 2016

c. Theo Cm ý b. ta có Tam giác vuông BEH = tam giác vuông BEA

=> EA = EH ( 2 cạnh tương ứng ) (**)

 Xét tam giác vuông AEK và tam giác vuông HEC có :

+ EA = EH ( theo ** )

+ góc AEK = góc HEC ( đối đỉnh )

=> tam giác vuông AEK = tam giác vuông HEC ( cạnh góc vuông + góc nhọn )

=> EK = EC ( 2 cạnh tương ứng ) (***)

Xét tam giác AEK có góc A là góc vuông 

=> góc A là góc lớn nhất trong tam giác 

Mà EK đối diện với góc A

=> EK là cạnh lớn nhất trong tam giác AEK

=> EK > EA 

Lại có : EK = EC ( theo *** )

=> EC > EA 

=> AE < EC

3 tháng 12 2021

chịu m ko bt lm

5 tháng 5 2021

vì dùng máy tính nên ko vẽ hình đc thông cảm !!

a) giả thiết 

Δ ABC cân tại A 

AK là tia đối của AB

BK=BC

KH⊥BC(H∈BC)

KH cắt AC tại E

Kết luận 

KH=AC

BE là tia phân giác của góc ABC

b) xét tam giác BAC và tam giác BHK có

\(\widehat{B} \)  Chung

KH=BC (gt)

\(\widehat{BAC}=\widehat{BHK}=90\) (gt)

 tam giác BAC = tam giác BHK (ch-gn)

=>KH=AC(2 góc tương ứng )

b)Xét Δ KBC có BK=BC(gt)

=> tam giác KBC cân tại B

Mà KH⊥BC=> KH là đường cao

AC⊥AB =>AC⊥KB(K∈AB)=>AC là đường cao 

Mà AC giao vs KH tại E

=> E là trực tâm của tam giác 

=> BE là đường cao (tc 3 đg cao trong tam giác)

=> BE là giân giác của góc \(\widehat{KBC}\)

=>BE là giân giác của góc \(\widehat{ABC} \) (A∈BK)

5 tháng 5 2021

Giúp mình giải với ạ 🤗

a) Tính BC:

Ta có: Aˆ=90oA^=90o (ΔABC vuông tại A) {o là độ}

Áp dụng định lí PITAGO đối với ΔABC:

Ta có: BC2 = AB2 + AC2

=> BC2 = 62 + 82

=> BC2 = 100

=> BC =100−−−√=10(cm)100=10(cm)

b) ΔABK là tam giác...:

Ta có:

BK (BD) là đường phân giác của góc B (1)

AE vuông góc với BK (BD)

=> BK là đường vuông góc (2)

Từ (1) và (2):

=> ABK là tam giác cân (vì tam giác có đường phân giác đồng thời là đường cao là tam giác cân)

c) DK ⊥ BC:

Vì ΔKED vuông tại E (do AE ⊥ BD)

Ta có: E=90o⇒EKDˆ+KDEˆ=90oE=90o⇒EKD^+KDE^=90o

Áp dụng tính chất góc ngoài của tam giác bằng tổng hai góc trong không kề với nó:

⇒DKCˆ=EKDˆ+KDEˆ=90o

hay DK ⊥ BC.