Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a) ta có : \(\widehat{BAH}+\widehat{HAD}=\widehat{DAM}+\widehat{MAC}\) (AD là phân giác BAC)
\(\widehat{BAH}=\widehat{MAC}\)
=> \(\widehat{HAD}=\widehat{DAM}\)
=> AD là phân giác góc ham
b) tam giác ABM cân tại A
mà góc BAM=60
=> B=60
A+C+B=180
=> C=180-90-60=30
c) HAD=1/2 góc HAM=> HAD=1/2.30=15
xét tam giác ABC cân tại A
=> AB=AC(t/c tam giác cân)
=>^ABC=^ACB(t/c tam giác cân)
xét tam giác BAH và tam giác CAK
^A chung
AB=AC(cmt)
^AHB=^AKC
=> tam giác BAH = tam giác CAK(gcg)
=>BH=CK(2 cạnh tương ứng)
=>CH=BK (2 cạnh tương ứng)
b) bạn kiểm tra lại đề bài câu b nhé ! mik chưa thấy dữ kiện nào nói về điểm D cả
c) Ta có : AB=BK+AK
AC=CH+AH
mà AB=AC(cmt);CH=BK(cmt)
=> AK=AH
xét tam giác KAO và tam giác HAO
AK=AH(cmt)
^AKO=^AHO=90o
AO-cạnh chung
=> tam giác KAO = tam giác HAO (ch-cgv)
=>^KAO=^HAO(2 góc tương ứng)
=>^BAI=^CAI
xét tam giác BAI và tam giác CAI
AB=AC(cmt)
^BAI=^CAI(cmt)
AI-cạnh chung
=> tam giác BAI = tam giác CAI
=>^AIB=^AIC ( 2 góc tương ứng)
mà ^AIB+^AIC=180o(kề bù)
=> ^AIB=^AIC=90o
=>AI vuông góc BC
bài 2 bạn tham khảo tại link này
https://h o c 2 4.vn/hoi-dap/question/494804.html
nhớ viết liền từ h o c 2 4 nha! vì olm ko cho viết
A B C H D K 1 2 1 2 3
a) \(\widehat{BAH}=\widehat{C}\) (vì cùng phụ với \(\widehat{B}\)) (1)
\(\widehat{CAH}=\widehat{B}\) (vì cùng phụ với \(\widehat{C}\)) (2)
Xét tam giác DAB có: \(\widehat{ADC}=\widehat{DAB}+\widehat{B}\) (vì góc ngoài bằng tổng hai góc trong không kề với nó)
Ta lại có: \(\widehat{DAC}=\widehat{DAH}+\widehat{HAC}\)
Mà \(\widehat{DAB}=\widehat{DAH}\) (tính chất tia phân giác)
\(\widehat{B}=\widehat{HAC}\) (theo (2))
=> \(\widehat{ADC}=\widehat{DAC}\)
b) Theo câu a ta có: \(\widehat{C}=\widehat{HAB}\)
=> \(\widehat{C_1}=\widehat{C_2}=\widehat{A_1}=\widehat{A_2}\)
Xét tam giác ACK có tổng 2 góc A và C là:
\(\widehat{ACK}+\widehat{CAK}=\widehat{C_2}+\widehat{CAK}=\widehat{A_1}+\widehat{CAK}=\widehat{CAB}=90^o\)
=> Góc còn lại bằng 90 độ, tức là \(\widehat{AKC}=180^o-\left(\widehat{ACK}+\widehat{CAK}\right)=180^o-90^o=90^o\)
=> CK vuông góc với AD