Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : tam giác ABC vuông tại A
=> BAC = 90 độ (1)
có : MD vuông góc AB
=> MDA = 90 độ (2)
Ta có : ME vuông góc AC
=> MEA = 90 độ (3)
Từ (1)(2)(3) => ADME là hình chữ nhật
a)
DEA = EAF = AFD = 900
=> AEDF là hình chữ nhật
b)
D là trung điểm của BC
mà DE // AC (DE _I_ AB; AC _I_ AB)
=> E là trung điểm của AB
mà E là trung điểm của MD (M đối xứng D qua AB)
=> ADBM là hình bình hành
mà AB _I_ MD (M đối xứng D qua AB)
=> ADBM là hình thoi
c)
D là trung điểm của BC
mà DF // AB (DF _I_ AC; AB _I_ AC)
=> F là trung điểm của AC
mà F là trung điểm của ND (N đối xứng D qua AC)
=> ADCN là hình bình hành
mà AC _I_ ND (N đối xứng D qua AC)
=> ADCN là hình thoi
=> AN // BC
mà AM // BC (ADBM là hình thoi)
=> M, A, N thẳng hàng
AN = CD (ADCN là hình thoi)
AM = BD (ADBM là hình thoi)
=> CD = BD (D là trung điểm của BC)
=> AM = AN
=> M đối xứng N qua A
d)
AEDF là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)
=> Tam giác ABC vuông cân tại A
a) Tứ giác AIDK là hình chữ nhật
b) M đối xứng với N qua A
c) Để CM đi qua trung điểm của IK thì D là trung điểm cạnh BC
Giải thích các bước giải:
a)
M đối xứng với D qua AB (gt)
I là giao điểm của MD với AB (gt)
→MI=ID,MD⊥AB→MI=ID,MD⊥AB tại I
Tương tự: NK=KD,ND⊥ACNK=KD,ND⊥AC tại K
Xet tứ giác AIDK:
ˆIAK=90o(AB⊥AC)ˆAID=90o(DI⊥AB)ˆAKD=90o(DK⊥AC)IAK^=90o(AB⊥AC)AID^=90o(DI⊥AB)AKD^=90o(DK⊥AC)
→→ Tứ giác AIDK là hình chữ nhật (tứ giác có 3 góc vuông)
→→ 2 đường chéo AD và IK cắt nhau tại trung điểm mỗi đường là điểm O
→ID//AK,ID=AK;IA//DK,IA=DK→ID//AK,ID=AK;IA//DK,IA=DK
b)
Xét tứ giác MIKA:
MI//AK(ID//AK)MI=AK(=ID)MI//AK(ID//AK)MI=AK(=ID)
→→ Tứ giác MIKA là hình bình hành (2 cạnh đối song song và bằng nhau)
→MA//IK,MA=IK→MA//IK,MA=IK
Xét tứ giác AIKN:
IA//KN(IA//DK)IA=KN(=DK)IA//KN(IA//DK)IA=KN(=DK)
→→ Tứ giác AIKN là hình bình hành (2 cạnh đối song song và bằng nhau)
→AN//IK,AN=IK→AN//IK,AN=IK
→→ M, A, N thẳng hàng
→MA=AN→MA=AN
→→ M đối xứng với N qua A
c)
Để CM đi qua trung điểm của IK
Hay CM đi qua điểm O
→→ CM cắt AD tại trung điểm O của mỗi đường
→→ Tứ giác CAMD là hình bình hành (2 đường chéo cắt nhau tại trung điểm mỗi đường)
→MD=AC→2ID=AC→ID=12AC→MD=AC→2ID=AC→ID=12AC
Mà ID//AC(ID//AK)ID//AC(ID//AK)
→→ ID là đường trung bình của △ABC△ABC
→→ D là trung điểm của BC
Vậy để CM đi qua trung điểm của IK thì D là trung điểm cạnh BC