Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng tính chất đường phân giác:
ABAC=BDDC=1520=34(1)ABAC=BDDC=1520=34(1)
Áp dụng định lý Pitago cho tam giác vuông ABCABC:
AB2+AC2=BC2=(BD+DC)2=352=1225(2)AB2+AC2=BC2=(BD+DC)2=352=1225(2)
Từ (1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49(1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49
⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28 (cm)
A B C H D 1 2 15cm 20cm 25cm
Xét t/gABC ta thấy AD là đường p/g của BAC
=>DB/DC=AB/AC (t/c phân giác)
Mà AB=15 cm ;AC=20cm nên ta có:
DB/DC=15/20
=> ta có tỉ lệ thức sau: DB/DB+DC=15/15+20 (t/c tỉ lệ thức)
=>DB/BC=15/35=>DB=15/35.BC=15/35.25=75/7(cm).
b) Ta kẻ AH _|_ BC
=>SABD=1/2AH.BD
=>SACD=1/2AH.DC
=>SABD/SACD=1/2AH.BD/1/2AH.DC=BD/DC
Mà ta thấy DB/DC=15/20=3/4
=> t/s SABD và SACD=3/4.
P/S: Bài này mik làm rồi nên hình mũi tên chỉ điển hình AB=15cm AC..... thôi nhé :< Cậu đừng ghi vào cũng được
a: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
BC=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
b: Xét ΔABC có DE//AC
nên DE/AC=BD/BC
=>DE/8=3/7
hay DE=24/7(cm)
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
Hình tự vẽ lấy nhé
a) Trong tam giác ABC, ta có: AD là đường phân giác của:
\(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)
Mà AB = 15cm và AC = 20cm ( gt )
Nên \(\frac{DB}{DC}=\frac{15}{20}\)
\(\Rightarrow\frac{DB}{DB+DC}=\frac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )
\(\Rightarrow\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}\left(cm\right)\)
b) Kẻ \(AH\perp BC\)
Ta có: \(S_{ABD}=\frac{1}{2}AH.BD\)
\(S_{ACD}=\frac{1}{2}AH.CD\)
\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.CD}=\frac{BD}{DC}\)
Mà \(\frac{DB}{DC}=\frac{15}{12}=\frac{3}{4}\)
\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{3}{4}\left(đpcm\right)\)
a: BC=BD+CD
=15+20
=35(cm)
Xét ΔABC có AD là phân giác
nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)
=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)
=>AB=3k; AC=4k
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)
=>\(25k^2=1225\)
=>\(k^2=49\)
=>k=7
=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)
b:
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)
\(\dfrac{BD}{BC}=\dfrac{15}{35}=\dfrac{3}{7}\)
=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot294=126\left(cm^2\right)\)
Ta có: \(S_{ABD}+S_{ACD}=S_{ABC}\)
=>\(S_{ACD}+126=294\)
=>\(S_{ACD}=168\left(cm^2\right)\)