K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

tam giác ABC vuông tại A \(=>\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=HC.BC\end{matrix}\right.\)

\(\frac{AB^2}{AC^2}=\frac{BH.BC}{HC.BC}=\frac{BH}{CH}\left(đpcm\right)\)

22 tháng 9 2019

tam giác ABC vuông tại A có đường cao AH\(=>AH^2=BH.HC\) (1)

mà BH=3,6 ; CH=6,4 (2)

(1)(2)=>AH=4,8(đvđd)

3 tháng 9 2020

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

3 tháng 9 2020

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

28 tháng 7 2019

chịu toán lp 9 mới có lp 7 thôi mà

16 tháng 8 2016

A B C H

a) Xét hai tam giác vuông : tam giác HBA và tam giác ABC có : 

góc B chung , góc AHB = góc BAC = 90 độ

=> tam giác HBA đồng dạng với tam giác ABC (g.g)

=> \(\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow AB^2=BH.BC\)

b) Xét hai tam giác vuông : tam giác HBA và tam giác HAC có :

góc AHB = góc AHC = 90 độ , góc ABH = góc HAC vì cùng phụ với góc BCA

=> tam giác HBA đồng dạng với tam giác HAC

=> \(\frac{BH}{AH}=\frac{AH}{CH}\Rightarrow AH^2=BH.CH\)

c) Ta có : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}BC.AH\Rightarrow AB.AC=BC.AH\)

\(\Rightarrow\left(AB.AC\right)^2=\left(BC.AH\right)^2\Leftrightarrow\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}\)

\(\Rightarrow\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

7 tháng 8 2016

ko ai bít lm lun hã @@

5 tháng 8 2019

a) Xét 2 tam giác vuông DHC và FBC có: ^HCD chung => \(\Delta DHC~\Delta FBC\)

=> \(\frac{CD}{CF}=\frac{CH}{BC}\) => \(CH.CF=BC.CD\) (1) 

tương tự với 2 tam giác vuông DBH và EBC có: ^EBC chung => \(\Delta DBH~\Delta EBC\)

=> \(\frac{BD}{BE}=\frac{BH}{BC}\) => \(BH.BE=BC.BD\) (2) 

(1) và (2) => \(CH.CF+BH.BE=BC\left(BD+CD\right)=BC^2\)

b) CM tương tự câu a), ta cũng có: \(AH.AD+BH.BE=AB^2;AH.AD+CH.CF=AC^2\)

cộng lại ta có đpcm