K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Lời giải:

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.CB$

$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$

$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$

$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)

$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)

 

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Hình vẽ:

5 tháng 7 2021

Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HB=\dfrac{9}{16}HC\)

Ta có: \(AB^2=BH.BC=BH\left(BH+HC\right)=\dfrac{9}{16}HC\left(\dfrac{9}{16}HC+HC\right)\)

\(=\dfrac{9}{16}HC.\dfrac{25}{16}HC=\dfrac{225}{256}HC^2\)

\(\Rightarrow HC^2=\dfrac{256AB^2}{225}=\dfrac{16384}{25}\Rightarrow HC=\dfrac{128}{5}\left(cm\right)\)

\(\Rightarrow HB=\dfrac{72}{5}\Rightarrow BC=\dfrac{128+72}{5}=40\left(cm\right)\)

\(\Rightarrow AC=\sqrt{BC ^2-AB^2}=\sqrt{40^2-24^2}=32\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24.32}{40}=\dfrac{96}{5}\left(cm\right)\)

NV
5 tháng 7 2021

\(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HC=\dfrac{16}{9}HB\)

Áp dụng hệ thức lượng:

\(AB^2=HB.BC=HB\left(HB+HC\right)\)

\(\Leftrightarrow24^2=HB.\left(HB+\dfrac{16}{9}HB\right)\)

\(\Rightarrow HB^2=\dfrac{5184}{25}\Rightarrow HB=\dfrac{72}{5}\left(cm\right)\)

\(HC=\dfrac{16}{9}HB=\dfrac{128}{5}\) (cm)

\(BC=HB+HC=40\) (cm)

\(AC=\sqrt{BC^2-AB^2}=32\) (cm)

\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}\left(cm\right)\)

AB/AC=4/3

=>HB/HC=16/9

=>HB/16=HC/9=k

=>HB=16k; HC=9k

AH^2=HB*HC

=>144k^2=24^2=576

=>k=2

=>HB=32cm; HC=18cm

AB=căn 32*50=40cm

AC=căn 18*50=30cm

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

26 tháng 7 2017

A B H C

Ta có \(\frac{HB}{HC}=\frac{1}{3}\Rightarrow HC=3HB\)

Xét \(\Delta AHB\)có \(AH^2=AB^2-HB^2\Rightarrow144=AB^2-HB^2\left(1\right)\)

Xét \(\Delta AHC\)có \(AH^2=AC^2-HC^2\Rightarrow144=AC^2-HC^2=AC^2-9HB^2\left(2\right)\)

Cộng (1) và (2) ta có \(AB^2-HB^2+AC^2-9HB^2=288\Rightarrow\left(AB^2+AC^2\right)-10HB^2=288\)

\(\Rightarrow BC^2-10HB^2=288\Rightarrow\left(HB+3HB\right)^2-10HB^2=288\Rightarrow HB^2=48\Rightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Rightarrow HC=3HB=12\sqrt{3}\left(cm\right)\Rightarrow BC=16\sqrt{3}\left(cm\right)\)

Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=HB.BC=4\sqrt{3}.16\sqrt{3}=192\Rightarrow AB=8\sqrt{3}\left(cm\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{576}=24\left(cm\right)\)

Vậy \(BC=16\sqrt{3}cm;AC=24cm;AB=8\sqrt{3}cm\)