Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{C}=28^0\)
Xét ΔACH vuông tại H có
\(AH=CH\cdot\tan28^0\)
\(=20.3\cdot\tan28^0\)
\(\Leftrightarrow AH\simeq10,793701\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AH^2+CH^2=AC^2\)
\(\Leftrightarrow AC^2=10.793701^2+20.3^2\)
hay \(AC\simeq22,991172\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\simeq5,739112\left(cm\right)\)
\(\Leftrightarrow BC\simeq26.093112\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB\simeq12,339226\left(cm\right)\)
Chu vi tam giác ABC là:
C=AB+AC+BC
\(=12.339226+22.991172+26.093112\)
\(=64.423510\left(cm\right)\)
cách 1
Đề bài có đủ điều kiện để tính. Sau khi xác định được tỷ lệ các cạnh tg ABC là a:b:c=5:4:3, đặt AB=3t, AC=4t; BC=5t (như bạn Hải đã chứng minh). Vì tam giác ABC vuông ta có AB^2=BH.BC ---> (3t)^2=BH.(5t) ---> BH=1,8.t
----> AH^2=AB^2-BH^2 =(3t)^2 -(1,8t)^2 = 9t^2 -3,24t^2 =5,76t^2 --> AH= 2,4t
Chu vi ABH=30 --> AB+BH+AH=30 --> 3t+1,8t+2,4t=30 --->7,2t=30 ---> t= 25/6
Chu vi ABC= 3t+4t+5t= 12t =12.(25/6) =50 cm
cách 2
Tam giác ABH và CAH vuông và có ^BAH=^C (cùng phụ với góc B)
Nên Tam giác ABH và CAH đồng dạng (g-g) =>AB/AC = k (tỷ số đồng dạng)
Mà C(ABH) / C(CAH) = k (tỷ số chu vi bằng tỷ số đồng dạng)
suy ra 30/40 = k hay k = 3/4.
do đó AB/AC = 3/4 hay AB/3 = AC/4 = t
=> AB = 3t; AC = 4t Theo Pitago ta tính được BC = 5t.
Vậy chu vi tam giác ABC là AB+AC+BC = 3t+4t+5t = 12t.
k mk nha!!^-^
Sau khi xác định được tỷ lệ các cạnh tg ABC là a:b:c=5:4:3, đặt AB=3t, AC=4t; BC=5t . Vì tam giác ABC vuông ta có AB^2=BH.BC => (3t)^2=BH.(5t) => BH=1,8.t
=> AH^2=AB^2-BH^2 =(3t)^2 -(1,8t)^2 = 9t^2 -3,24t^2 =5,76t^2 --> AH= 2,4t
Chu vi ABH=30 --> AB+BH+AH=30 --> 3t+1,8t+2,4t=30 --->7,2t=30 ---> t= 25/6
Chu vi ABC= 3t+4t+5t= 12t =12.(25/6) =50 cm
Đáp số : 50 cm
A B C H
Hình vẽ chỉ mang tính chất minh họa
Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
\(AB=\sqrt{BC^2-AC^2}\)
\(\Rightarrow AB=\sqrt{100^2-60^2}\)
\(\Rightarrow AB=80\left(cm\right)\)
Chu vi tam giác ABC= AB+AC+BC=80+60+100=240(cm)
Xét tam giác ABC vuông tại A, đương cao AH có:
+ \(AH=\frac{AB.AC}{BC}\)
\(\Rightarrow AH=\frac{80.60}{100}\)
\(\Rightarrow AH=48\left(cm\right)\)
+ \(BH=\frac{AB^2}{BC}\)
\(\Rightarrow BH=\frac{80^2}{100}=64\left(cm\right)\)
\(CH=BC-BH\)
\(\Rightarrow CH=100-64=36\left(cm\right)\)
Chu vi tam giác ABH= AB+BH+AH=80+64+48=192(cm)
Chu vi tam giác ACH=AC+CH+AH=60+36+48=144(cm)
\(BC=\dfrac{15^2}{9}=25\left(cm\right)\)
BH=25-9=16cm
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
AB=căn(16^2+12^2)=20cm
C=16+12+20=28+20=48cm
Xét ΔABC vuông tại A có sin B=AC/BC=3/5
nên góc B=37 độ
Ta có: \(\widehat{CAH}=\widehat{B}\left(=90^0-\widehat{C}\right)\)
mà \(\widehat{B}=60^0\)
nên \(\widehat{CAH}=60^0\)
Xét ΔAHC vuông tại H có
\(HC=AC\cdot\sin\widehat{CAH}\)
\(\Leftrightarrow AC=\dfrac{20}{\dfrac{\sqrt{3}}{2}}=\dfrac{40\sqrt{3}}{3}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(BC=AC:\dfrac{\sqrt{3}}{2}\)
\(=\dfrac{40\sqrt{3}}{3}\cdot\dfrac{2}{\sqrt{3}}=\dfrac{80}{3}\left(cm\right)\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+BC+CA\)
\(=\dfrac{40\sqrt{3}}{3}+\dfrac{40}{3}+\dfrac{80}{3}\)
\(=\dfrac{120+40\sqrt{3}}{3}\)