K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
27 tháng 4 2019

a) + ΔABC ∼ ΔHAC ( g.g )

\(\Rightarrow\widehat{ABC}=\widehat{HAC}\)

b) + CD // AB => CD ⊥ AC

+ ΔBAC ∼ ΔACD ( g.g )

\(\Rightarrow\frac{AB}{AC}=\frac{CA}{CD}\Rightarrow AC^2=AB.CD\)

c) + Xét ΔACD có HE // CD theo hệ quả của định lý Ta-lét ta có :

\(\Rightarrow\frac{HE}{CD}=\frac{AE}{AC}\)

+ Tương tự ta cm đc : \(\frac{HE}{AB}=\frac{CE}{CA}\)

Do đó : \(\frac{HE}{AB}+\frac{HE}{CD}=\frac{CE}{CA}+\frac{AE}{AC}\)

\(\Leftrightarrow HE\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{HE}\)

27 tháng 4 2019

Mọi người ơi mình cần gấp câu c. Giúp mình với

15 tháng 12 2021

sai hay đúng?

21 tháng 8 2017

Cho tam giác ABC vuông tại A có đường cao AH

a) chứng minh tam giác AHB đồng dạng với tam giác ABC

b) Cho BC = 10cm AB = 6cm Tính AC, HB

c) Phân giác của góc ABC cắt AH tại F và cắt cạnh AC tại E. Chứng minh

FA/FH =EC/EA 

d) Đường thẳng qua C song song vs BE cắt AH tại K. CHứng minh: AF2 = FH x FK

chịu

botay.com.vn

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

29 tháng 7 2018

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)

\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)

Xét \(\Delta BHD\)và \(\Delta CKD\) có: 

                         \(\widehat{BHD}=\widehat{CKD}=90^0\)

                          \(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)

Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)

b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:

                     \(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)

                       \(\widehat{AHB}=\widehat{AKC}=90^0\)

Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)

Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay  \(AB.AK=AC.AH\)

C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\) 

\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)

Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)

d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.

Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I

\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)

\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)

Suy ra: \(\widehat{F}=\widehat{IEC}\)

Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)

Nên \(\widehat{FBO}=\widehat{ICE}\)

Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)

Chúc bạn học tốt.