K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

b: Xét tứ giác AFDH có 

DH//AF

DH=AF(=AE)

Do đó: AFDH là hình bình hành

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: ADHE là hình chữ nhật

nen AH=DE

c: Để ADHE là hình vuông thì AH là phân giác của góc DAE
=>ΔABC cân tại A

=>AB=AC

18 tháng 12 2022

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: Vì ADHE là hình chữ nhật

nên AH=DE

c: Để ADHE là hình vuông thì AH là phân giác của góc DAE

mà AH vuông góc vơi BC

nên ΔABC cân tại A

=>AB=AC

19 tháng 11 2016

(Hình bạn tự vẽ nha)

a ,

Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .

b ,

Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB

Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .

-> AC là đường trung trực của MN

->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .

-> Tứ giác MANC là hình thoi.

c ,

Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)

Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .

-> AE = EB (2)

Vì tứ giác MANC là hình thoi nên AF=FC (3)

Từ (1),(2) và (3) suy ra BE = FC (4)

Từ (1) và (4) suy ra : AE + BE = AF + FC

hay AB = AC

-> Tam giác ABC là tam giác vuông cân .

Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .

 

 

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

=>AH cắt DE tại trung điểm của mỗi đường và AH=DE

=>OA=OE

b: AD*AB=AH^2

AE*AC=AH^2

Do đó: AD*AB=AE*AC

=>AD/AC=AE/AB

=>ΔADE đồng dạng với ΔACB

30 tháng 11 2018

ứ giác HDAE có ^A=^D=^E=90 độ 
nên HDAE là hình chữ nhật, suy ra AH=DE. 

b) ∆BDH vuông tại D có DP là trung tuyến nên PD=PH 
suy ra ∆PDH cân tại P nên ^PDH=PHD (1) 
Do ADHE là hình chữ nhật nên ^ODH=^OHD (2) 
công vế với vế của (1) và (2) ta có: 
^PDH+^ODH=^PHD+^OHD=^OHP=90 độ 
Hay ^PDO=90 độ, nên PD┴DE. (3) 
Chứng minh tương tự cuãng có QE┴DE (4) 
từ (3) và (4) suy ra PD//QE 
nên DEQP là hình thang vuông. 

c) BO và AH là đường cao của ∆ABQ nên O là trực tâm 
của ∆ABQ. ADHE là hình chữ nhật nên S(ADHE)=2S(DHE) (5) 
d)∆BDH vuông tại D có DP là trung tuyến 
nên S(BDH)=2S(DPH) (6) 
tương tự S(HAC) = 2S(HEQ) (7) 
Cộng vế với vế của (5), (6), (7) 
thì S(ABC)=2S(DEQP)

30 tháng 11 2018

dạ em cám ơn chị ạ