Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
A H B C D E 1 2
a) AB là đường trung trực của HD \(\Rightarrow\) AD = AH.
AC là đường trung trực của HE \(\Rightarrow\) AE = AH.
Suy ra AD = AE. (1)
Tam giác AHD cân nên \(\widehat{HAD}=2\widehat{A_1}.\)
Tam giác AHE cân nên \(\widehat{HAE}=2\widehat{A_2}.\)
Suy ra \(\widehat{HAD}+\widehat{HAE}=2\widehat{A_1}+2\widehat{A_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)\)
\(\widehat{HAD}+\widehat{HAE}=2.90^o=180^o.\)
Do đó D, A, E thẳng hàng. (2)
Từ (1) và (2) suy ra A là trung điểm của DE. Vậy D đối xứng với E qua A.
b) Tam giác DHE có HA là đường trung tuyến và HA = \(\dfrac{1}{2}\) DE nên \(\Delta DHE\) vuông tại H.
c) Hãy chứng minh \(\widehat{ADB}=\widehat{AHB}=90^o,\widehat{AEC}=90^o\) để suy ra BDEC là hình thang vuông
d) Hãy chứng minh BD = BH, CE = CH.
Lời giải:
a. Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.
b. Vì $I, H$ đối xứng với nhau qua $E$ nên $E$ là trung điểm của $IH$
Xét tam giác $AIE$ và $AHE$ có:
$AE$ chung
$IE=EH$ (do $E$ là trung điểm $IH$)
$\widehat{AEI}=\widehat{AEH}=90^0$
$\Rightarrow \triangle AIE=\triangle AHE$ (c.g.c)
$\Rightarrow \widehat{IAE}=\widehat{HAE}(1)$
Tương tự: $\triangle AHF=\triangle AKF$ (c.g.c)
$\Rightarrow \widehat{KAF}=\widehat{HAF}(2)$
Từ $(1); (2)\Rightarrow \widehat{IAE}+\widehat{KAF}+\widehat{BAC}=\widehat{HAE}+\widehat{HAF}+\widehat{BAC}$
Hay $\widehat{IAK}=\widehat{BAC}+\widehat{BAC}=90^0+90^0=180^0$
$\Rightarrow I,A,K$ thẳng hàng.
a: Xét tứ giác AIHK có
\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
Do đó: AIHK là hình chữ nhật
gợi í : A có 3 góc vuông
b)hcn( câu a )
=>KH=,//AI
=>AI//,=DK
=> 4 giác DKIA là hbh
c)theo b có
4 giác DKIA là hbh
=>DA//,=KI(1)
cm AKIE là hbh
có hcn AKHI
=>AE//,=KI(2)
TỪ1&2 => AE=,//DA(//,=KI)
=>AE\(\equiv\)DA