Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Xét tam giác IHK và tam giác ECK có:
IHK = ECK (=90)
KH = KC (K là trung điểm của HC)
K1 = K2 (2 góc đối đỉnh)
=> Tam giác IHK = Tam giác ECK (c.g.c) (1)
=> IH = CE (2 cạnh tương ứng) (2)
b.
Tam giác IHK = Tam giác ECK (theo 1)
=> HIK = CEK (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
=> AH // CE
=> AIC = ICE (2 góc so le trong) (3)
IH = CE (theo 2)
mà IH = IA (I là trung điểm của HA)
=> IA = CE (4)
Xét tam giác ACI và tam giác EIC có:
IA = CE (theo 4)
IC là cạnh chung
AIC = ECI (theo 3)
=> Tam giác ACI = Tam giác EIC (c.g.c) (5)
c.
Tam giác ACI = Tam giác EIC (theo 5)
=> AC = EI (2 cạnh tương ứng) (6)
=> ACI = CIE (2 góc tương ứng) mà 2 góc này nằm ở vị trì so le trong
=> IK // AC
Tam giác IHK = Tam giác ECK (theo 1)
=> IK = EK (2 cạnh tương ứng)
=> K là trung điểm của IE
=> IK = EK = 1/2 IE
mà AC = IE (theo 6)
=> IK = 1/2 AC
a) xét tam giác IHK và tam giác ECK,có
HK=KC( gt)
góc IHK= góc ECK=90 độ
IHK=EKC( đối đỉnh)
--> tam giác IHK= tam giác ECK ( g.c.g)
--> IH=EC ( 2 cạnh tương ứng)
A B C H I K E
a) Xét tam giác vuông HIK và tam giác vuông CEK có :
HK=KC
Góc HKI= góc EKC
=> Tam giác HIK = tam giác CEK ( cạnh góc vuông góc nhọn kệ )
=> IH= EC
a:
Xét ΔKIH vuông tại H và ΔKEC vuông tại C có
KH=KC
\(\widehat{HKI}=\widehat{CKE}\)
Do đó: ΔKIH=ΔKEC
Suy ra:IH=EC
b: Xét ΔACI và ΔEIC có
AC=EI
CI chung
AI=EC
Do đó: ΔACI=ΔEIC
c:
Xét ΔHAC có
K là trung điểm của HC
I là trung điểm của HA
Do đó: KI là đường trung bình
=>KI//AC và KI=AC/2
A B C H K E N M a, ^BAC + ^BAK = 180 (kề bù)
^BAC = 135 (gt)
=> ^BAK = 45
xét ΔAKB có : ^AKB = 90
=> ΔAKB vuông cân (dấu hiệu)
b, ^KBC = 90 - ^KCB
^CAH = 90 - ^ACH
=> ^CAH = ^ABK
^CAH = ^KAE (đối đỉnh)
=> ^ABK = ^KAE
xét ΔAKE và ΔBKC có : ^CKB = ^AKE = 90
AK = KB do ΔAKB cân tại K (câu a)
=> ΔAKE = ΔBKC (cgv-gnk)
=> AE = BC (định nghĩa)
c, kẻ MK
xét ΔMNE và ΔMNK có : MN chung
^MNE = ^MNK = 90
NE = NK do N là trung điểm của EK (Gt)
=> ΔMNE = ΔMNK (2cgv)
=> MN = MK (định nghĩa) (1)
^EMN = ^KMN (định nghĩa) (2)
MN ⊥ BE ; CK ⊥ BE => MN // CK (định lí)
=> ^EMN = MCK (đồng vị)
^NMK = ^MKC (so le trong)
và (2)
=> ^MCK = ^MKC
=> ΔMKC cân tại M (dấu hiệu)
=> MK = MC (định nghĩa) và (1)
=> ME = MC mà M nằm giữa C và E
=> M là trung điểm của EC