Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(BI\) là tia phân giác
\(\Rightarrow\dfrac{AI}{IH}=\dfrac{AB}{BH}\)
\(\Rightarrow IA.BH=IH.BA\)
B) Xét \(\Delta ABH\) và \(\Delta CBA\):
\(\widehat{AHB}=\widehat{BAC}=90^o\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB~\Delta CBA\)
\(\Rightarrow\dfrac{BH}{BA}=\dfrac{AB}{BC}\)
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)
C) \(BD\) là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\)
Mà \(\dfrac{AB}{BC}=\dfrac{BH}{BA}\Rightarrow\dfrac{AD}{DC}=\dfrac{BH}{BA}=\dfrac{HI}{HA}\)
A B C H D E
a. Xét 2 tam vuông HAB và ABC:
\(\widehat{B}\) chung
Suy ra: \(\Delta HBA\sim\Delta ABC\) (g.g)
=> \(\frac{AB}{BC}=\frac{HB}{AB}\)
=> AB2 = HB.BC
b. Xét tam giác vuông ABC có : BC2 = AB2 + AC2
Hay BC2 = 122 + 162
=> BC2 = 144 + 256 = 400
=> BC = \(\sqrt{400}=20\) (cm)
Tam giác ABC có: AD là đường phân giác của \(\widehat{ABC}\)
=> \(\frac{AB}{AD}=\frac{BC}{CD}\) (Tính chất đường phân giác của tam giác)
Hay\(\frac{AB}{AD}=\frac{BC}{AC-AD}\)
=> \(\frac{12}{AD}=\frac{20}{16-AD}\)
=> 12(16 - AD) = 20AD
=> 192 - 12AD = 20AD
=> -12AD - 20AD = -192
=> -32AD = -192
=> AD = 6 (cm)
c. Để mình giải sau nha bạn!!!
Câu c) :
Xét tam giác vuông ABD ta có : BD2 = AB2 + AD2
Hay BD2 = 122 + 62
BD2 = 144 + 36 = 180
=> BD = \(\sqrt{180}=6\sqrt{5}\) (cm)
Ta có : AD + DC = AC
Hay 6 + DC = 16
=> DC = 16 - 6 = 10 (cm)
Ta có : \(\Delta HBA\sim\Delta ABC\) (C/M ở câu a)
=> \(\frac{HB}{AB}=\frac{AB}{BC}\)
Hay \(\frac{HB}{12}=\frac{12}{20}\)
=> HB = \(\frac{12.12}{20}\) = 7,2 (cm)
Xét 2 tam giác vuông ABD và HBE:
\(\widehat{ABD}=\widehat{HBE}\) (BD là đường phân giác của \(\widehat{ABC}\))
Suy ra: \(\Delta ABD\sim\Delta HBE\) (g.g)
=> \(\frac{AB}{HB}=\frac{BD}{BE}\)
Hay \(\frac{12}{7,2}=\frac{6\sqrt{5}}{BE}\)
=> BE = \(\frac{7,2.6\sqrt{5}}{12}=\frac{18\sqrt{5}}{5}\)
Ta có : \(\frac{6}{10}=\frac{\frac{18\sqrt{5}}{5}}{6\sqrt{5}}\)
Hay \(\frac{DA}{DC}=\frac{BE}{BD}\) (đpcm)
a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )
⇒Bc=10(cm)⇒Bc=10(cm)
Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)
⇒AD=AC−DC=8−5=3(cm)
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
A B C H D E F
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)
\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)
b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)
c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)
\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)
Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)
\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)
\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)