K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

\(a,BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\left(pytago\right)\)

\(b,\) Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{9\cdot12}{15}=7,2\left(cm\right)\)

\(c,\) Dễ thấy AEHF là hcn

Do đó \(\widehat{HAF}=\widehat{EFA}\)

Mà \(\widehat{HAF}=\widehat{HBA}\left(cùng.phụ.\widehat{HAB}\right)\)

Do đó \(\widehat{EFA}=\widehat{HBA}\)

Ta có \(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{EFA}\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEF\sim\Delta ACB\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\Rightarrow AE\cdot AB=AF\cdot AC\)

\(d,\) Áp dụng HTL: \(\left\{{}\begin{matrix}AH^2=EA\cdot AB\\AH^2=FA\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AE=\dfrac{AH^2}{AB}=5,76\left(cm\right)\\AF=\dfrac{AH^2}{AC}=4,32\left(cm\right)\end{matrix}\right.\)

\(\Rightarrow S_{AEF}=\dfrac{1}{2}AE\cdot AF=\dfrac{1}{2}\cdot5,76\cdot4,32=12,4416\left(cm^2\right)\)

Mà \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=54\left(cm^2\right)\)

Vậy \(S_{BEFC}=S_{ABC}-S_{AEF}54-12,4416=41,5584\left(cm^2\right)\)

 

 

 

23 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

17 tháng 6 2021

a, xét \(\Delta ABC\) vuông tại A áp dụng hệ thức lượng\(=>AC^2=CH.BC=>HC=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6cm\)

\(=>HB=BC-HC=15-9,6=5,4cm\)

áp dụng Pytago trong \(\Delta AHC\) vuông tại H

\(=>HA=\sqrt{AC^2-HC^2}=\sqrt{12^2-9,6^2}=7,2cm\)

\(b,\) do E,F là hình  chiếu vuông góc của H lần lượt lên AB, AC

\(=>\left\{{}\begin{matrix}EH\perp AB\\HF\perp AC\end{matrix}\right.\) mà \(\Delta AHB\) và \(\Delta AHC\) lần lượt vuông góc tại H

theo hệ thức lượng

\(=>\left\{{}\begin{matrix}AH^2=AE.AB\\AH^2=AF.AC\end{matrix}\right.\)=>\(AE.AB=AF.AC\)

c, do E,F là hình  chiếu vuông góc của H lần lượt lên AB, AC

=> tứ giác EHFA là hình chữ nhật\(=>AE=HF< =>HF^2=AE^2\)

áp dụng pytago trong \(\Delta EHA\) vuông tại E

\(=>HE^2+AE^2=AH^2< =>HE^2+HF^2=AH^2\)(1)

theo hệ thức lượng trong tam giác ABC vuông tại A đường cao AH

\(=>AH^2=HB.HC\left(2\right)\)

(1)(2)=>\(HE^2+HF^2=HB.HC\)

6 tháng 10 2015

a) AEHF có 3 góc vuông nên là HCN.

6 tháng 10 2015

b) Theo hệ thức lượng: AE.AB = AH; AF.AC = AH2  => AE.AB = AF.AC.

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=7,2(cm)

4 tháng 10 2017

áp dụng hệ thức lượng vào tam giác vuông ABC có AH^2=BH.CH=9.16=144 nên AH=12  , áp dụng định lý pytago vào 2 tam giác ABH ,AHC ta được AB=15,AC=20       ADHE là hình chữ nhật vi có 3 góc=90độ      áp dụng hệ thức lượng ta tính được AD và DH 

1 tháng 9 2021

a) Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\)(Định lý Pytago)

\(\Rightarrow AC^2=BC^2-AB^2=10^2-6^2=64\Rightarrow AC=8\left(cm\right)\)

Xét tam giác ABC vuông tại A có đường cao AH

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)(hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\Rightarrow AH=\dfrac{24}{5}\left(cm\right)\)

Xét tứ giác AEHF có:

\(\widehat{AEH}=\widehat{EAF}=\widehat{AFH}=90^0\)

=> Tứ giác AEHF là hình chữ nhật

=> \(EF=AH=\dfrac{24}{5}\left(cm\right)\)

b) Áp dụng tỉ số lượng giác của góc nhọn trong tam giác ABH và tam giác AHC vuông tại H:

\(AH^2=AE.AB\)

\(AH^2=AF.AC\)

\(\Rightarrow AE.AB=AF.AC\)

 

1 tháng 9 2021

Mơn cậu nha