Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Chứng minh tam giác AMC = tam giác DMB?
Xét tam giác AMC và tam giác DMB có:
- Góc BMD = góc AMC (đối đỉnh)
-BM = MC (gt)
-MA = MD (gt)
=> Tam giác AMC = tam giác DMB(g.c.g)
b)Chứng minh AC = BD?
Ta có: tam giác AMC = tam giác DMB (cmt)
=>BD=AC
c)Chứng minh AB vuông góc với BD?
Xét tam giác AMC và tam giác DMB có:
-Góc DMB = góc ABC (so le trong)
=>BD//AC
Mà AB vuông góc với AC
=> AB vuông góc với BD
d) Chứng minh AM=1/2 BC?
Xát tam giác ABC vuông tại A có:
M là trung điểm của BC(gt)
=>AM là đường trung tuyến
=>AM=1/2 BC (tính chất đường trung tuyền trong 1 tam giác vuông)
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó:ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
c: Xét tứ giác AFBD có
E là trung điểm của AB
E là trung điểm của DF
Do đó: AFBD là hình bình hành
Suy ra: BD//AF và BD=AF
mà BD//AC
và AF,AC có điểm chung là A
nên F,A,C thẳng hàng
mà AF=AC(=BD)
nên A là trung điểm của FC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔMBA và ΔMCD có
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)
MA=MD
Do đó: ΔMBA=ΔMCD
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB