Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK
giúp mình nhoa!!
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a) Xét ∆CMA và ∆BMD:
Góc CMA= góc BMD (đối đỉnh)
MA=MD (gt)
MC=MB (M là trung điểm BC)
=> ∆CMA=∆BMD(c.g.c)
=> góc CAM = góc BDM và CA=DB
Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB
=> CABD là hình bình hành
Lại có góc CAB = 90 độ (gt)
=> ACDB là hình chữ nhật
b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA
Mà 2 góc này ở bị trí so le trong nên AE//DB
Lại có AE=BD(=CA)
=> AEBD là hình bình hành
a: Xét tứ giác ABEC có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo AE
Do đó: ABEC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABEC là hình chữ nhật
Bài 2 :
A B C D M E
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5:
Lời giải chi tiết bài toán:
Đề bài:Cho tam giác ABCABC vuông tại AA, có AB=aAB = a. Gọi M,N,DM, N, D lần lượt là trung điểm của AB,BC,ACAB, BC, AC.
- Chứng minh NDND là đường trung bình của tam giác ABCABC và tính độ dài của NDND theo aa.
- Chứng minh tứ giác ADNMADNM là hình chữ nhật.
- Gọi QQ là điểm đối xứng của NN qua MM. Chứng minh AQBNAQBN là hình thoi.
- Trên tia đối của tia DBDB lấy điểm KK sao cho DK=DBDK = DB. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng.
-
Vì NN là trung điểm của BCBC và DD là trung điểm của ACAC, theo định nghĩa đường trung bình:
NDND song song với ABAB và ND=12ABND = \frac{1}{2}AB. -
Do AB=aAB = a, suy ra ND=12aND = \frac{1}{2}a.
Kết luận: NDND là đường trung bình của tam giác ABCABC, và ND=12aND = \frac{1}{2}a.
2. Chứng minh tứ giác ADNMADNM là hình chữ nhật:-
MM là trung điểm của ABAB, nên AM=MB=12AB=12aAM = MB = \frac{1}{2}AB = \frac{1}{2}a.
-
ND∥ABND \parallel AB và ND=12ABND = \frac{1}{2}AB (tính chất đường trung bình).
-
AM⊥ABAM \perp AB (tam giác vuông tại AA), nên AM⊥NDAM \perp ND.
-
Tứ giác ADNMADNM có:
- AD∥MNAD \parallel MN (vì cùng vuông góc với ABAB).
- AM⊥NDAM \perp ND.
Do đó, ADNMADNM là hình chữ nhật.
3. Chứng minh AQBNAQBN là hình thoi:-
QQ là điểm đối xứng của NN qua MM, nên MQ=MNMQ = MN.
-
Vì MM là trung điểm của ABAB, suy ra AQ=BN=AB=aAQ = BN = AB = a.
-
Trong hình chữ nhật ADNMADNM:
- AM=ND=12aAM = ND = \frac{1}{2}a, và MM là trung điểm của ABAB.
-
Tứ giác AQBNAQBN có:
- AQ=BNAQ = BN.
- AB=QN=aAB = QN = a.
Vậy AQBNAQBN là hình thoi.
4. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng:-
Trên tia đối của tia DBDB, lấy điểm KK sao cho DK=DBDK = DB.
-
QQ đối xứng với NN qua MM, nên MQ=MNMQ = MN.
-
Trong tam giác vuông ABCABC, DD và MM lần lượt là trung điểm của ACAC và ABAB:
- DB=AC2+AB22=a2+AC22DB = \frac{\sqrt{AC^2 + AB^2}}{2} = \frac{\sqrt{a^2 + AC^2}}{2}.
- DK=DBDK = DB, nên KK nằm trên đường thẳng qua DD kéo dài.
-
Vì AQBNAQBN là hình thoi, nên AQAQ song song với DBDB. Kết hợp với vị trí của KK, suy ra Q,A,KQ, A, K thẳng hàng.
- NDND là đường trung bình của tam giác ABCABC, ND=12aND = \frac{1}{2}a.
- ADNMADNM là hình chữ nhật.
- AQBNAQBN là hình thoi.
- Ba điểm Q,A,KQ, A, K thẳng hàng.
a,Xét tứ giác ABDC có:
D đối xứng với A qua M nên :
DA=DC(1)
M là trung điểm BC nên:
BM=MC(2)
Từ (1)và (2) suy ra:
tứ giác ABDC là hình chữ nhật(đpcm)
b, vì ABDC là hình chữ nhật nên:
AB=DC và AB//DC
mà DC=FC và F trên tia DC
=>AB=FC và AB//FC
vậy tứ giác ABCF là hình bình hành(đpcm)