Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mp bờ AB ko chứa C vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mp bờ AC ko chứa B, vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM ta lấy điểm F sao cho M là trung điểm của À.
a) CMR: tam giác MAC= tam giác MBF => AC = BF
b) CMR: tam giác ADE = tam giác BAF
c) CM AM vuông góc DE
d) Từ A, vẽ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. CMR: K là trung điểm của DE
bn hãy vận dụng hết các kiến thức đã học
Nhớ lại các bài giảng của thầy cô giáo
Tìm các mối quan hệ giữa cái này và cái kia
sau đó =>............
b: Xét ΔABC vuông tại A và ΔCDA vuông tại C có
CA chung
AB=CD
Do đó: ΔABC=ΔCDA
Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành
SUy ra: AD//BC
c: Xét ΔAHB vuông tại H và ΔCKD vuông tại K có
AB=CD
\(\widehat{ABH}=\widehat{CDK}\)
Do đó: ΔAHB=ΔCKD
Suy ra: BH=DK
D C A H B
a) Xét \(\Delta ABH\)có:
\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\)( đl tổng 3 góc của 1 tam giác)
hay \(\widehat{BAH}+60^o+90^o=180^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
b) Xét \(\Delta ABC\)và \(\Delta CDA\)có:
\(AB=CD\left(gt\right)\)
\(\widehat{BAC}=\widehat{ACD}\)( 2 góc slt)
\(AC\)cạnh chung
\(\Rightarrow\Delta ABC=\Delta CDA\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{CAD}\)( 2 góc tương ứng)
c) Ta có: \(\widehat{ACB}=\widehat{CAD}\)( c/mt)
Mà 2 góc này nằm ở vị trí slt
\(\Rightarrow AD//BC\)
\(\Rightarrow\widehat{AHB}=\widehat{HAD}\)(2 góc slt)
Mà \(\widehat{AHB}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{HAD}=90^o\)
Hay nói cách AD vuông góc AH( đpcm)
học tốt!!