Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo hệ thức lượng tam giác vuông
AC^2 = HC*BC = 16*BC (1)
AH^2 = HC*BH = 16*BH (2)
1/AH^2 = 1/AC^2 + 1/AB^2 (3)
thay 1,2 vào 3:
1/16*BH = 1/16*BC + 1/15^2 (4)
mặt khác:
BH = BC - HC = BC -16
thay vào 4:
1/16*(BC -16) = 1/16*BC + 1/225
<=> 1/(BC - 16) - 1/BC = 16/225
<=> (BC -BC +16)/((BC - 16)*BC) =16/225
<=> BC^2 - 16*BC - 225 = 0
=> BC = 25 (thỏa mãn) BC = -9 (loại)
thay vào 1 ta có AC = 20 cm
2 ta có AH = 12 cm
Cố lên bạn nha!
Đặt HB=x(cm,x>0) => BC=HB+HC=x+16
Ta có: Tam giác ABC vuông tại A có AH là đường cao
=>AB2=HB.BC
=>152=x.(x+16)
=>225=x2+16x
=>x2+16x-225=0
=>x2+25x-9x-225=0
=>x.(x+25)-9.(x+25)=0
=>(x+25).(x-9)=0
=>x=-25(loại) hay x=9(nhận)
Vậy HB=9(cm)
Ta có: AH2=HB.HC(hệ thức lượng)
=>AH2=9.16=144
=AH=12(cm)
Ta có: AC2=HC.BC(hệ thức lượng)
=>AC2=16.25=400
=>AC=20(cm)
Ta có: BC=HB+HC=9+16=25(cm)
AH=căn 12^2-9^2=3*căn 7(cm)
CH=AH^2/HB=9*7/9=7(cm)
BC=9+7=16cm
AC=căn CH*BC=4*căn 7(cm)
Xét tam giác \(ABH\) vuông tại H có
\(AH^2+HB^2=AB^2\left(Pytago\right)\)
\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Xét tam giác ABC vuông tại A
\(AB^2=HB.BC\\ \Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\\ HB+HC=BC\\ \Rightarrow HC=BC-BH=25-9=16\left(cm\right)\\ AB.AC=AH.BC\\ \Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\left(cm\right)\)
bài làm tương tự :
dùng Pitago đảo thử từng cặp 1
ta có:
(b−c)2+h2
=b2+c2−2bc+h2(b−c)2+h2
=b2+c2−2bc+h2(1)
vì tam giác ABC vuông ở A có đường cao AH nên
a2=b2+c2a2=b2+c2vàAB.AB
=AH.BC=2SAB.AB
=AH.BC
=2Shayb.c
=a.hb.c=a.h
⇒b2+c2−2bc+h2
=a2−2ah+h2
=(a−h)2
⇒b2+c2−2bc+h2
=a2−2ah+h2
=(a−h)2
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH^2+16HB-225=0\)
hay BH=9(cm)
\(\Leftrightarrow AC=20cm\)
hay AH=12cm
Ta có: \(AB^2=HB\cdot HC\)
\(\Leftrightarrow HB\left(HB+16\right)=225\)
\(\Leftrightarrow HB^2+16HB-225=0\)
\(\Leftrightarrow HB=9\left(cm\right)\)
\(\Leftrightarrow AC=\sqrt{HC\cdot BC}=\sqrt{16\cdot25}=20\left(cm\right)\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Đặt BC=x \(\Rightarrow\)BH=x-16
\(\Rightarrow\)AB2=x(x-16) \(\Leftrightarrow\)152=x(x-16) \(\Leftrightarrow\)x=25
\(\Rightarrow\)BC=25(cm),BH=25-16=9(cm)
AC=\(\sqrt{BC^2-AB^2}\)=20(cm)
AH=\(\sqrt{BH.HC}\)=12(cm
Ta có: \(AC^2=CH\cdot BC\)
\(\Leftrightarrow CH^2+16HC-225=0\)
\(\Leftrightarrow CH^2+25HC-9HC-225=0\)
\(\Leftrightarrow CH=9\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=15^2-9^2=144\)
hay AH=12cm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20cm
Ta có: BC=BH+HC
nên BC=9+16=25cm