Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB/BC=4/5
nên AB=4/5BC
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2\cdot\dfrac{9}{25}=9^2\)
=>BC=15(cm)
=>AB=12(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>AH=7,2(cm)
\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{15}=9.6\left(cm\right)\)
CH=BC-BH=15-9,6=5,4(cm)
b: Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}=37^0\)
=>\(\widehat{C}=53^0\)
\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\)
\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=20(cm)
\(\widehat{B}\simeq37^0\)
\(\widehat{C}\simeq53^0\)
Áp dụng HTL:
\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\Rightarrow BC=BH+BC=25\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=15\left(cm\right)\\AC=\sqrt{CH\cdot BC}=20\left(cm\right)\end{matrix}\right.\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\approx53^0\Rightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
A B C H
VẼ HÌNH HƠI XẤU THÔNG CẢM NHA
áp dụng hệ thức lượng trong tam giác vuông ABC ta có \(AB\cdot AC=AH\cdot BC\) \(\Rightarrow AH\cdot BC=63\) (1)
áp dụng đl pitagovao tam giác vuông ABC ta có \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{130}\)
thay vao (1) ta co \(AH\cdot BC=63\Rightarrow AH=\frac{63}{\sqrt{130}}\)