K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Vì tam giác ABC vuông tại A nên:

\(AB^2+AC^2=BC^2\)

=> \(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)

=>\(\frac{4}{9}AC^2+AC^2=144\)

=>\(AC^2\left(\frac{4}{9}+1\right)=144\)

=>\(AC^2.\frac{13}{9}=144\)

=>\(AC^2=144:\frac{13}{9}=\frac{1296}{13}\)

=> \(AC=\frac{36\sqrt{13}}{13}\)

=> \(AB=AC.\frac{2}{3}=\frac{36\sqrt{13}}{13}.\frac{2}{3}=\frac{24\sqrt{13}}{13}\)

Vậy 2 cạnh góc vuông của tam giác ABC là \(\frac{24\sqrt{13}}{13}\)\(\frac{36\sqrt{13}}{13}\)

16 tháng 7 2023

Ta có \(\Delta ABC\) vuông tại A nên:

\(BC^2=AB^2+AC^2\)

Mà: \(AB=\dfrac{2}{3}AC\)

\(\Rightarrow BC^2=\left(\dfrac{2}{3}AC\right)^2+AC^2\)

\(\Rightarrow12^2=\left(\dfrac{2}{3}AC\right)^2+AC\)

\(\Rightarrow144=\dfrac{4}{9}AC^2+AC^2\)

\(\Rightarrow144=\dfrac{13}{9}AC^2\)

\(\Rightarrow AC^2=\dfrac{144}{\dfrac{13}{9}}\approx100\)

\(\Rightarrow AC\approx\sqrt{100}\approx10\left(cm\right)\)

Ta có \(AC=10cm\Rightarrow AB=\dfrac{2}{3}AC=\dfrac{2}{3}\cdot10\approx6,6\left(cm\right)\) 

Vậy: ....

18 tháng 7 2023

sai rồi ông ơi

 

 

15 tháng 8 2016

Đặt AC = x (x > 0) => AC = 2/3x

Áp dụng đ/l Pytago , ta có : \(AB^2+AC^2=BC^2\Leftrightarrow x^2+\left(\frac{2x}{3}\right)^2=12^2\Leftrightarrow\frac{13}{9}x^2=144\Leftrightarrow x^2=\frac{1296}{13}\Leftrightarrow x=\frac{36\sqrt{13}}{13}\)(vì x > 0)

Suy ra \(AC=\frac{36\sqrt{13}}{13};AB=\frac{24\sqrt{13}}{13}\)

 

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{13}{9}=144\)

\(\Leftrightarrow AC^2=\dfrac{1296}{13}\)

\(\Leftrightarrow AC=\dfrac{36\sqrt{13}}{13}cm\)

\(\Leftrightarrow AB=\dfrac{24\sqrt{13}}{13}cm\)

8 tháng 9 2021

Bạn viết đề sai rồi

Cái \(3\dfrac{14}{17}\) là hỗn số chứ ko phải là số tự nhiên nhân vs phân số

 

28 tháng 8 2019

#)Giải :

(Hình bn tự vẽ)

AD là phân giác của ∆ABC \(\Rightarrow\) \(\frac{BD}{AB}=\frac{DC}{AC}\Rightarrow\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}\)

Ta có : \(BC=BD+CD=3.\frac{14}{17}+9.\frac{3}{17}=\frac{42}{17}+\frac{27}{17}=\frac{69}{17}\)

Mà ∆ABC vuông tại A nên theo định lí Py - ta - go \(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=\left(\frac{69}{17}\right)^2\)

Theo t/chất dãy tỉ số bằng nhau : \(\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}=\frac{BD^2+DC^2}{AB^2+AC^2}=\frac{\left(\frac{42}{17}\right)^2+\left(\frac{27}{17}\right)^2}{\left(\frac{69}{17}\right)^2}=\) dài dòng vãi ra @@

Chắc đề sai rồi

Hình vẽ chỉ mang tính chất minh họa, bạn tham khảo nhé.

undefined

6 tháng 8 2017

Do tam giác ABC vuông tại A nên ta có biểu thức: \(AB^2+AC^2=BC^2\)
Thay các dữ kiện \(BC=12cm\) ; \(AB=\frac{2}{3}AC\) vào biểu thức trên ta được:
\(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
\(\Rightarrow\frac{4}{9}AC^2+AC^2=144\)
\(\Rightarrow\frac{13}{9}AC^2=144\)
\(\Rightarrow AC^2=\frac{1296}{13}\)
Do AC là một cạnh tam giác nên \(AC>0\)\(\Rightarrow AC=\frac{36}{\sqrt{13}}cm\)
Khi đó:
\(AB=\frac{2}{3}AC\)
\(\Rightarrow AB=\frac{2}{3}\cdot\frac{36}{\sqrt{13}}\)
\(\Rightarrow AB=2\cdot\frac{12}{\sqrt{13}}\)
\(\Rightarrow AB=\frac{24}{\sqrt{13}}cm\)

23 tháng 6 2017

a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ

cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2

TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2  ÁP DỤNG PITA GO TÌM RA CẠNH bc 

b,

23 tháng 6 2017

sao lại \(\frac{1}{\sqrt{2}}\) ?