Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác BAC vuông tại A và tam giác BMN vuong tại M có: góc BAC=góc BMN
=> tam giác BAC đồng dạng tam giác BMN (g-g)
=> BA/BM=BC/BN=> BN=BM.BC/BA=18.20/12=30cm
b) tam giác PAN vuong tại A và tam giác PMC vuong tại M có
góc APN=góc MPC (đối đỉnh)
=> tam giác PAN đồng dạng tam giác PMC (g-g)
=> PA/PM=PN/PC
=> PA.PC=PM.PN (đpcm)
c) xét tam giác BNC có MN và AC là hai đường cao cắt nhau tại P
=> BP là đường cao thứ 3 kẻ từ B
=> BP vuong góc NC (đpcm)
a: Xet ΔCDM vuông tại M và ΔCBA vuông tại A có
góc C chung
=>ΔCDM đồng dạng với ΔCBA
b: BM=5a-2a=3a
\(AC=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)
ΔCDM đồng dạngvơi ΔCBA
=>CD/CB=DM/BA=CM/CA
=>CD/5a=DM/3a=2a/4a=1/2
=>CD=2,5a; DM=1,5a
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Đề sai rồi bạn
a: Xét ΔABC vuông tại A và ΔDMC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDMC
=>AB/DM=BC/MC=AC/DC
=>6/DM=10/MC=8/3
=>DM=6:8/3=2,25cm và MC=10:8/3=10*3/8=30/8=3,75cm
b: Xét ΔABC vuông tại A và ΔMBE vuông tại M có
góc B chung
=>ΔABC đồng dạng với ΔMBE
=>BA/BM=BC/BE
=>BA*BE=BM*BC
a: Xet ΔBME vuông tại M và ΔBAC vuông tại A có
góc B chung
=>ΔBME đồng dạng với ΔBAC
b: Xét ΔMBE vuông tại M và ΔMNC vuông tại M có
góc MBE=góc MNC
=>ΔMBE đồng dạng với ΔMNC
=>MB/MN=ME/MC
=>MN*ME=MB*MC=1/4BC^2
=>BC^2=4*MN*ME
a) xét △ABC và △MBE có :
Góc BAC = Góc BME = 90 (Gt)
Góc B chung
⇒△ABC ∼ △MBE (g.g) (1)
b)Xét △ABC và △MCN có:
Góc BAC = góc NMC = 90 (Gt)
⇒△ABC ∼ △MBE (g.g) (2)
Ta có M là tđ của BC ⇒ MB =MC =1/2 BC
Từ (1) và (2) ⇒△MNC ∼ △MBE
⇒EM/MC = MN/BM
⇔ EM/MN = 1/2BC : 1/2BC
⇔BC2 =EM/MN : 4
⇔BC2 = EM/4MN
a) Xét 2 \(\Delta\)\(ABC\)và \(MDC\)có:
\(\widehat{BAC}=\widehat{DMC}=90^0\left(gt\right)\)
\(\widehat{C}\)chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta MDC\left(g-g\right).\)
b) Xét 2 \(\Delta\)\(BMI\)và \(BAC\)có:
\(\widehat{BMI}=\widehat{BAC}=90^0\left(gt\right)\)
\(\widehat{B}\)chung
\(\Rightarrow\Delta BMI\)đồng dạng với \(\Delta BAC\left(g-g\right).\)
\(\Rightarrow\frac{BM}{BA}=\frac{BI}{BC}\)(cặp cạnh tương ứng).
\(\Rightarrow BI.BA=BM.BC\left(đpcm\right).\)
Chúc bạn học tốt!
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b:
Sửa đề: AN=2cm
MN//BC
=>MN/BC=AN/AC
=>MN/10=2/8=1/4
=>MN=2,5cm
c AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm; DC=40/7cm
a)
Xét tam giác BAC vuông tại A và tam giác BMN vuông tại M có:
\(\widehat{BAC}\)=\(\widehat{BMN}\)
=> Tam giác BAC ᔕ Tam giác BMN (g-g)
=> BA/BM=BC/BN
=> BN=BM.\(\dfrac{BC}{BA}\)=18.\(\dfrac{20}{12}\)=30cm
b)
Xét tam giác PAN vuông tại A và tam giác PMC vuông tại M có
\(\widehat{APN}\)=\(\widehat{MPC}\) (đối đỉnh)
=> Tam giác PAN ᔕ Tam giác PMC (g-g)
=> \(\dfrac{PA}{PM}\)=\(\dfrac{PN}{PC}\)
=> PA.PC=PM.PN (đpcm)