Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((
Câu c) Qua D kẻ đường thẳng song song với AC cắt BC tại G
+) ^DGB = ^ACB ( đồng vị )
\(\Delta\)ABC cân tại A => ^ACB = ^ABC
=> ^DGB = ^ABC = ^^DBG => \(\Delta\)DBG cân => DB = DG (1)
+) Có FM //AC ( cùng vuông BH ) => ^FMB = ^ACB = ^ABC ( đồng vị; \(\Delta\)ABC cân )
Xét \(\Delta\)BDM vuông tại D và \(\Delta\)MFB vuông tại F có: BM chung ; ^FMB = ^DBM ( = ^ABC )
=> \(\Delta\)BDM = \(\Delta\)MFB
=> DB = FM ( 2)
Từ (1) ; (2) => FM = DG
Dễ chứng minh FMEH là hình chữ nhật => FM = EH
=> DG = EH = CK (3)
+) Gọi I là giao điểm BC và DK
Xét \(\Delta\)GDI và \(\Delta\)CKI có:
^GDI = ^CKI ( so le trong )
DG = CK ( theo 3)
^DGI = ^KCI ( so le trong )
=> \(\Delta\)GDI = \(\Delta\)CKI
=> DI = KI
=> I là trung điểm của KD
=> BC qua trung điểm KD