K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

Do đó: ΔHBA\(\sim\)ΔHAC

Suy ra: HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC

=>HA^2=HB*HC

10 tháng 2 2018

kho ua

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021

a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

MH/MC=AH/AC=HB/AB

b: Xét ΔABE và ΔCMA có

góc BAE=góc MCA

góc ABE=góc CMA

=>ΔABE đồng dạng vơi ΔCMA

=>góc AEB=góc CAM

=>góc BEA=góc EAM

=>AM//BE

26 tháng 3 2023

Vì sao góc ABE=góc CMA thì bạn lại ko nói. Giải kiểu thầy cô tự hiểu. 

8 tháng 4 2024

Câu b. Từ H kẻ đường thẳng song song AC cắt EM tại K

Ta chứng minh được BH/BM=EH/EA =>đpcm

6 tháng 4 2018

a) Xét tam giác ABC và tam giác HAC có :

\(\widehat{BAC}=\widehat{AHC}\left(=90^o\right)\)

Chung \(\widehat{ACB}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g) (đpcm)

b) Xét tam giác ABC và tam giác HBA có :

\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)

Chung \(\widehat{ABC}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA (g-g)

Mà tam giác ABC đồng dạng với tam giác HAC ( câu a )

Suy ra tam giác HBA đồng dạng với tam giác HAC

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Leftrightarrow HA^2=HB\times HC\left(đpcm\right)\)

c) Do \(AH^2=BH\times HC\)

\(\Leftrightarrow AH^2=9\times16\)

\(\Leftrightarrow AH^2=144\)

\(\Leftrightarrow AH=\sqrt{144}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Py-ta-go cho tam giác AHC vuông tại H ta được :

\(AH^2+HC^2=AC^2\)

\(\Leftrightarrow12^2+16^2=AC^2\)

\(\Leftrightarrow AC^2=400\)

\(\Leftrightarrow AC=\sqrt{400}\)

\(\Leftrightarrow AC=20\left(cm\right)\)

  Ta có : \(BC=BH+HC=9+16=25\left(cm\right)\)

Do BE là phân giác của \(\widehat{ABC}\)

\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{9+25}=\frac{AC}{34}=\frac{20}{34}=\frac{10}{17}\)

\(\Rightarrow\frac{EC}{BC}=\frac{10}{17}\Leftrightarrow\frac{EC}{25}=\frac{10}{17}\Leftrightarrow EC=\frac{250}{17}\left(cm\right)\)

Lại có : \(AE=AC-EC=20-\frac{250}{17}=\frac{90}{17}\left(cm\right)\)

Vậy độ dài đoạn thẳng EC là \(\frac{250}{17}\) cm ; AE là \(\frac{90}{17}\) cm