Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC co
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
ss="Apple-interchange-newline">
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
Có: Góc BAE + BAD = góc BCF + BCA (=180 độ)
Góc BAD = BCA
⇒ góc BAE = FCB
Xét △BAE và △FCB có:
AB = CF
BAE = FCB
AE = CB
⇒△BAE = △FCB (c.g.c)
⇒EBA = CFB
Mà góc CFB + ABF = 90 độ ⇒EBA + ABF = 90 độ
⇒ góc EBF = 90 độ ⇒BE vuông góc với BF
Đề sai rồi bạn