K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

BC = \(\sqrt{3^2+4^2}\) = 5

Tam giác ABC vuông tại A => Trung tuyến AM = BC/2 = 5/2 cm

AG = 2AM/3 = 2/3 x 5/2 = 5/3 cm

16 tháng 11 2019

Gọi AM,BN,CE lần lượt là các đường trung tuyến của ΔABC

=>AM,BN,CE đồng quy tại G

BC=căn 6^2+8^2=10cm

=>AM=5cm

=>AG=10/3cm

AN=8/2=4cm

=>BN=căn 6^2+4^2=2*căn 13(cm)

=>BG=2/3*2căn 13=4/3*căn 13(cm)

AE=6/2=3cm
CE=căn 3^2+8^2=căn 73(cm)

=>CG=2/3*căn 73(cm)

3 tháng 8 2018

Gọi AM là đường trung tuyến của \(\Delta ABC\) thì AM phải đi qua điểm G.

Áp dụng định lí Pitago vào \(\Delta ABC\) vuông tại A, ta có: 

           \(AB^2+AC^2=BC^2\)

Thay số vào, tính được BC = 13 cm

Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC nên: 

\(AM=\frac{1}{2}BC=\frac{1}{2}.13=6,5\left(cm\right)\) (vì BC = 13 cm)

G là trọng tâm của \(\Delta ABC\left(gt\right)\Rightarrow GA=\frac{2}{3}AM=\frac{2}{3}.6.5=\frac{13}{3}\left(cm\right)\)

Vậy \(AM=\frac{13}{3}cm\)

Chúc bạn học tốt.