Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
a) Xét tam giác HBA và tam giác ABC :
\(\widehat{AHB}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ABC}\)chung
=> tam giác HBA \(~\)tam giác ABC ( đpcm )
b) Chứng minh tương tự câu a) ta có tam giác ABC \(~\)tam giác HAC
\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow AC^2=HC\cdot BC\)( đpcm )
c) Áp dụng đính lý Pytago vào tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)( cm )
Từ câu b) ta có : \(HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\)
Vậy....
A B C H
a)Xét tam giác HAB và tam giác ABC
góc ABC : chung
góc BHA=góc BAC=90o
Suy ra: tam giác HAB ~ tam giác ABC (g-g)
b)Ta có: tam giác ABC vuông tại A
=>AC2=BC.HC (hệ thức lượng)
c)Ta có: \(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=25\left(cm\right)\)
Ta lại có: \(AC^2=BC.HC\left(HTL\right)\Rightarrow HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\left(cm\right)\)
a) Xét ΔHBA và ΔABC có:
∠BHA = ∠BAC = 900 ( GT)
Góc B: Chung
Vậy ΔHBA ~ ΔABC (g.g)
b) Xét ΔHAC và ΔABC.có:
∠AHC = ∠BAC =900 ( GT)
Góc C : Chung
Vậy ΔHAC ~ ΔABC (g.g)
Suy ra:
c) Áp dụng định lí Pytago cho vuông tại A, ta có:
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)
Do đó: BD=15/7(cm); CD=20/7(cm)
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
A B C H E D 3 4
a)
Xét \(\Delta ABC\) và \(\Delta HBA\)có:
\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)
\(\widehat{ABC}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)
b)
\(\Delta ABC\)vuông tại A
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)
c) Ta có
\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)
Xét \(\Delta ABC\)và \(\Delta DEC\)có
\(\widehat{BAC}=\widehat{CDE}=90^o\)
\(\widehat{ACB}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)
\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)
d)
\(\Delta AHB\)vuông tại H
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có; \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)
Ta lại có:
\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)
\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)
Ta lại có:
\(AE=AC-EC=4-1=3\left(cm\right)\)
mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A
Vậy \(\Delta ABE\)cân tại A
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
Do đó: ΔHAC\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)