K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

25 tháng 12 2018

a)BC^2=9^2 + 12^2=225

BC=15 cm

AM là trung tuyến ứng với cạnh huyền nên = BC/2

AM=15:2=7,5 cm

b)tứ giác AKMI là hình chữ nhật vì có 3 góc vuông

c)Xét tam giác vuông ABC có:

BM=CM(gt)

MI // AB (tứ giác AKMI là hình chữ nhật)

=> AI = CI (đường trung bình)

Xét tứ giác AMCN có :

MI = NI (gt)

AI = CI (chứng minh trên)

=> tứ giác AMCN là hình bình hành (1)
Mặt khác trong tam giác ABC, AM là trung tuyến ứng với cạnh huyền BC

=>AM = BC/2 = CM (2)

từ (1) và (2) => tứ giác AMCN là hình thoi (đpcm)

18 tháng 11 2018

B A C D M N I

Sửa đề nha: I thuộc tia đối của NA, NA = NI.

a, Vì tgABC vuông tại A (GT) => \(\widehat{BAC}=90^o\)(Định nghĩa), mà M thuộc AB, D thuộc AC (GT) => \(\widehat{MAD}=90^o\)

Xét tgABC có: M là tđ của AB (GT)

                       N là tđ của BC (GT)

từ 2 điều => MN là đường trung bình của tgABC (Đ/n)

=> MN // AC (T/c), mà D thuộc AC (GT) => MN // AD

=>\(\widehat{NMA}+\widehat{NAD}=180^o\)(2 góc trog cùng phía)

Mà \(\widehat{MAD}=90^o\)(cmt)

=> \(\widehat{NMA}=90^o\)

Lại có ND // AB (GT), mà M thuộc AB(GT) => ND // MB

=> \(\widehat{NDA}+\widehat{MAD}=180^o\)(2 góc trong cùng phía)

Mà \(\widehat{MAD}=90^o\)(cmt)

=>\(\widehat{NDA}=90^o\)

Xét tg AMND có:

\(\widehat{MAD}=90^o\)(cmt)

\(\widehat{NMA}=90^o\)(cmt)

\(\widehat{NDA}=90^o\)(cmt)

Từ 3 điều trên => AMND là hcn (DHNB)

b, Vì I thuộc tia đối của NA (GT), NA = NA (GT)

=> N là tđ của AI (Đ/n)

Xét tứ giác ABIC có:

N là tđ của AI (cmt)

N là tđ của BC (GT)

AI giao BC tại N

Từ 3 điều trên => ABIC là hbh (DHNB)

Mà \(\widehat{BAC}=90^o\)(cmt)

Từ 2 điều trên => ABIC là hcn (DHNB)

c, Áp dụng định lí Pitago vào tgABC vuông tại A (GT), ta có:

AB2 + AC2 = BC2 

=> AC2 = BC2 - AB2

Mà AB = 8cm, BC = 10cm (GT)

=> AC2 = 102 - 82 = 100 - 64 = 36

=> AC = 6 (cm) (do AC > 0)
Xét tgABC có MN là đường trung bình (cmt) => MN = 1/2AC (T/c) mà AC = 6cm (cmt)

=> MN = 1/2.6 = 3(cm)

Mà AMND là hcn (cmt) => MN = AD (Đ/n)

Từ 2 điều trên => AD = 3(cm)

d, Vì N là trung điểm của BC (GT) => AN là đường trung tuyến ứng vs cạnh BC của tgABC (Đ/n)

Vì AMND là hvuông (GT) => AN là tia phân giác của góc MAD (T/c), mà M thuộc AB, D thuộc AC (GT)

=> AN là tia phân giác của góc BAC

Xét tgABC có:

An là đường trung tuyến (cmt)

AN là tia phân giác (cmt)

Từ 2 điều trên => tgABC cân tai A (Định lí)

Vậy...