Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì I là giao điểm của tia phân giác B và C nên AI là tia phân giác ( tia phân giác thứ 3)
Xét tam giác ADI và tam giác AEI ta có :
AI chung ; góc IDA= góc AEI (=90 độ) ; góc DAI=góc AEI (AI phân giác)
=> Tam giác...=tam giác... (cạnh huyền-góc nhọn)
=> AD=AE (2 cạnh tương ứng)
b) Kẻ IF vuông góc BC
Xét tam giác BDI và tam giác BFI ta có
góc BDI=BFI(=90 độ) ; BI chung ; góc DBI= góc IBF (BI phân giác);
=> tam giác ....= tam giác .. (cạnh huyền-góc nhọn)
=> BD=BF( 2 cạnh tương ứng )
Xét tam giác CFI và tam giác CEI ta có
góc CFI=CEI(=90 độ) ; CI chung ; góc FCI= góc ECI (BI phân giác);
=> tam giác ....= tam giác .. (cạnh huyền-góc nhọn)
=> CE=CF( 2 cạnh tương ứng )
Ta có : BF+FC=BC
hay BD+EC=BC
Vậy BD+EC=BC
c) Xét tam giác ABC vuông tại A ta có
AB2+AC2=BC2
hay 62+82= BC2
=> BC2=100
=>BC=10 (cm)
Ta có BC= BD+CE (câu b)
= 6-AD+8-AE
=14-2AD
Hay 14-2AD=BC
14-2AD=10
2AD=14-10=4
=> AD=AE=2 (cm)
(Hình tự vẽ nha)
A B C D E I H
a) Ta có: BI là phân giác của ^ABC
CI là phân giác của ^ACB
=> AI là phân giác của góc A (t/c 3 đường phân giác)
D là hình chiếu của I trên AB=> ID vuông góc với AB tại D
E là hình chiếu của I trên AC=> IE vuông góc với AC tại E
Xét tam giác ADI và tam giác AEI có: ^IAD=^IAE
Cạnh AI chung => Tam giác ADI=Tam giác AEI (cạnh huyền góc nhọn)
^ADI=^AEI=90o
=> AD=AE (2 cạnh tương ứng) (đpcm)
b) Vẽ thêm hình phụ: Từ điểm I hạ tia IH giao BC tại H và IH vuông góc với BC
=> BH+CH=BC (t/c cộng đoạn thẳng) (1)
ID vuông góc với AB=> ^IDB=90o
IE vuông góc với AC=> ^IEC=90o
Xét tam giác BDI và tam giác BHI có: ^IDB=^IHB=90o
Cạnh BI chung => Tam giác BDI=Tam giác BHI (cạnh huyền góc nhọn)
^IBD=^IBH (BI phân giác của góc B)
=> BD=BH (2 cạnh tương ứng) (2)
Xét tam giác EIC và tam giác HIC có: ^IHC=^IEC=90o
Cạnh CI chung =>Tam giác EIC=Tam giác HIC (cạnh huyền góc nhọn)
^ICH=^ICE (CI là phân giác của góc C)
=> CE=CH (2 cạnh tương ứng) (3)
Từ (1);(2) và (3)=> BD+EC=BC (đpcm)
c) Tam giác ABC có góc A=90o => AB^2 + AC^2 = BC^2 (theo định lí Pytago)
Thay AB=6cm và AC=8cm vào biểu thức trên, ta có: 6^2 + 8^2 = BC^2 => 36+64=BC^2=> BC^2=100 (cm)
=> BC=\(\sqrt{100}=10\left(cm\right)\)
ĐS:...
a) AI là tai phân giác của góc A nên ID = IE. (1)
Các tam giác vuông ADI, AEI có ˆDAI=ˆEAI=45oDAI^=EAI^=45o nên là tam giác vuông cân, do đó AD = ID, AE = IE. (2)
Từ (1) và (2) suy ra AD = AE.
b) Áp dụng định lí Py-ta-go trong tam giác vuông ABC:
BC2 = AB2 + AC2 = 62 + 82
BC2 = 36 + 64 = 100
⇒BC=√100=10(cm)⇒BC=100=10(cm).
Kẻ IF ⊥⊥ BC
Xét hai tam giác vuông IBD và IBF có:
BI: cạnh huyền chung
ˆIBD=ˆIBFIBD^=IBF^ (gt)
Vậy: ΔIBD=ΔIBF(ch−gn)ΔIBD=ΔIBF(ch−gn)
⇒⇒ BD = BF (hai cạnh tương ứng)
Xét hai tam giác vuông ICE và ICF có:
CI: cạnh huyền chung
ˆICE=ˆICF(gt)ICE^=ICF^(gt)
Vậy: ΔICE=ΔICF(ch−gn)ΔICE=ΔICF(ch−gn)
Suy ra: CE = CF (hai cạnh tương ứng)
Ta có: AB + AC - BC = AD + DB + AE + EC - BF - CF.
Do BD = BF, CE = CF nên:
AB + AC - BC = AD + AE
⇒⇒ 6 + 8 - 10 = AD + AE
⇒⇒ AD + AE = 4 (cm).
Theo câu a) ta có AD = AE nên AD = AE = 2cm.
a) AI là tai phân giác của góc A nên ID = IE. (1)
Các tam giác vuông ADI, AEI có ˆDAI=ˆEAI=45oDAI^=EAI^=45o nên là tam giác vuông cân, do đó AD = ID, AE = IE. (2)
Từ (1) và (2) suy ra AD = AE.
b) Áp dụng định lí Py-ta-go trong tam giác vuông ABC:
BC2 = AB2 + AC2 = 62 + 82
BC2 = 36 + 64 = 100
⇒BC=√100=10(cm)⇒BC=100=10(cm).
Kẻ IF ⊥⊥ BC
Xét hai tam giác vuông IBD và IBF có:
BI: cạnh huyền chung
ˆIBD=ˆIBFIBD^=IBF^ (gt)
Vậy: ΔIBD=ΔIBF(ch−gn)ΔIBD=ΔIBF(ch−gn)
⇒⇒ BD = BF (hai cạnh tương ứng)
Xét hai tam giác vuông ICE và ICF có:
CI: cạnh huyền chung
ˆICE=ˆICF(gt)ICE^=ICF^(gt)
Vậy: ΔICE=ΔICF(ch−gn)ΔICE=ΔICF(ch−gn)
Suy ra: CE = CF (hai cạnh tương ứng)
Ta có: AB + AC - BC = AD + DB + AE + EC - BF - CF.
Do BD = BF, CE = CF nên:
AB + AC - BC = AD + AE
⇒⇒ 6 + 8 - 10 = AD + AE
⇒⇒ AD + AE = 4 (cm).
Theo câu a) ta có AD = AE nên AD = AE = 2cm.