Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCDEF12
a)Theo định lý Pi-ta-go , ta có :
BC2 = AB2 + AC2
BC2 = 62 + 82
BC2 = 100
=> BC = 10
\(sinB=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}\)
\(\Rightarrow\widehat{B}\approx53^08^'\)
\(\Rightarrow\widehat{C}\approx90^0-\widehat{B}\approx90^0-53^08^'\approx36^052^'\)
b) AD là phân giác của \(\widehat{A}\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\frac{\widehat{A}}{2}=\frac{90^0}{2}=45^0\)
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{CD+CD}{7}=\frac{10}{7}\)
\(\Rightarrow BD=\frac{3.10}{7}=\frac{30}{7}\)
\(\Rightarrow CD=\frac{4.10}{7}=\frac{40}{7}\)
c) Tứ giác AEDF có \(\widehat{A}=\widehat{F}=\widehat{E}=90^{^0}\)
=> AEDF là hình chữ nhật .
AD là phân giác của \(\widehat{A}\)
=> AEDF là hình vuông .
\(DE\perp AB\) \(AC\perp AB\) => DE // AC
\(\frac{CD}{BC}=\frac{AE}{AB}\) ( đl Ta lét )
=> \(AE=\frac{CD.AB}{BC}=\frac{\frac{40}{7}.6}{10}=\frac{24}{7}\)
Chu vi tứ giác AEDF = \(\frac{24}{7}.4=\frac{96}{7}\)
\(S_{AEDF}=\left(\frac{24}{7}\right)^2=\frac{576}{49}\left(cm\right)\)
Tham khảo tại đây nha:
Câu hỏi của Moe - Toán lớp 9 - Học toán với online math
mã câu :1308090
#)Giải :
Bài 1 :
A B C O D E K
a) Các \(\Delta DBC;\Delta EBC\) nội tiếp đường tròn đường kính BC
\(\Rightarrow\Delta DBC;\Delta EBC\) vuông
\(\Rightarrow CD\perp AB;BE\perp AC\)
b) K là trục tâm của \(\Delta ABC\)
\(\Rightarrow AK\perp BC\)
Đáp án D
Áp dụng định lý Py – ta – go ta có: