Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
a) theo py ta go thì BC = 10 (tự tính nha)
trung tuyến AM thì
AM = BM = MC = 10/2 = 5
câu b từ nha
b) ADME là hình chữ nhật
A = 90
ADM = 90
=> DM \\ AE
A = MEA = 90
=> DA \\ ME
câu c từ nha
3.
Áp dụng định lý Py-ta-go:
\(AB^2+AC^2=BC^2\\ 6^2+8^2=BC^2\\ 36+64=BC^2\\ 100=BC^2\\ BC=10\left(cm\right)\)
Vì \(AM\)là trung tuyến của \(BC\) nên:
\(AM=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot10=5\)(cm)
b,
Xét tứ giác \(ADME\)
có \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\)
\(\Rightarrow\)Tứ giác \(ADME\) là hình chữ nhật
c,
Ta có: \(BM=MC=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot10=5\)(cm)
Xét \(\Delta AMB\)
Có:
\(AM=MB\left(=5cm\right)\)
\(\Rightarrow\Delta AMB\) là tam giác cân
\(\Rightarrow MD\) là đường trung trực
\(\Rightarrow AD=\dfrac{1}{2}AB\)
Xét \(\Delta AMC\)
Có:
\(AM=MC\left(=5cm\right)\)
\(\Rightarrow\Delta AMC\) là tam giác cân
\(\Rightarrow ME\) là đường trung trực
\(\Rightarrow AE=\dfrac{1}{2}AC\)
Để tứ giác \(ADME\) là hình vuông thì
\(AD=AE\\ \Leftrightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\\ \Rightarrow AB=AC\)
Vậy \(\Delta ABC\) là tam giác vuông cân thì tứ giác \(ADME\) là hình vuông
Bài 2 :
A B C D M E
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật