K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

Bài 1: 

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay \(AB=\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)

nên \(\widehat{B}=59^0\)

hay \(\widehat{C}=31^0\)

5 tháng 10 2023

b) Ta có:

\(\widehat{B}=180^o-90^o-42^o=48^o\) 

Xét tam giác ABC vuông tại A ta có:

\(cosB=\dfrac{AB}{BM}\Rightarrow cos48^o=\dfrac{6}{BM}\)

\(\Rightarrow BM=\dfrac{6}{cos48^o}\approx9\left(cm\right)\) 

Mà: \(sinB=\dfrac{AM}{BM}\Rightarrow sin48^o=\dfrac{AM}{9}\)

\(\Rightarrow AM=9\cdot sin48^o\approx6,7\left(cm\right)\) 

9 tháng 3 2017

a, Ta có ∆DEF vuông vì  D E 2 + D F 2 = F E 2

b, c, Tìm được: DK = 24 5 cm và HK = 32 5 cm

K D E ^ ≈ 36 0 52 ' ; K E D ^ = 35 0 8 '

d, Tìm được DM=3cm, FM=5cm và EM =  3 5 cm

e, f, Ta có:  sin D F K ^ = D K D F ;  sin D F E ^ = D E E F

=>  D K D F = D E E F => ED.DF = DK.EF

17 tháng 4 2023

Nối B vs I. Xét tam giác BID vuông tại D, có:

    BD2 = BI^2 - ID2 (1).Xét tam giác ICD vuông tại D, có:

    DC2 = IC2 - ID2 (2).Từ (1) và (2) =>

=> BD2 - DC2

   = BI2 - ID2 - IC2 + ID2

   = BI2 - IC2

   = BI2 - AI2 (vì AM=CM)

   = AB2=> AB2 = BD2 - DC2 (đpcm)

17 tháng 4 2023

Câu a

22 tháng 10 2021

Bài 1: 

\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)

\(DH=15\left(cm\right)\)

\(OC=\sqrt{9\cdot24}=6\sqrt{6}\left(cm\right)\)

\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)

\(OH=3\sqrt{15}\left(cm\right)\)

13 tháng 9 2015

1. Ta có : sin2anpha + cos2anpha=1

        => (0.6)2 + cos2anpha =1 

        => 0.36 + cos2anpha =  1

        => cos2anpha = 0.64

        =>cos anpha =0.8

 

 


 

27 tháng 10 2019

30 A C B D F E F' E'

Từ D Hạ đường cao DF' , DE' lần lượt lên AB; AC

=> Có: \(DE'\le DE;DF'\le DF\) với mọi vị trí D, E, F

=> \(S_{DEF}\le S_{DE'F'}\)

"=" xảy ra <=> E trùng E'; F trùng F'

AE'F'D là hình chữ nhật ( tự chứng minh )

Đặt: AF' = x; AE'=y

Có: \(AB=a;BC=2a=2.AB\)=> \(\Delta\)ABC vuông tại A có: \(\widehat{ACB}=30^o\)=> \(AC=a\sqrt{3}\)

=> \(BF'=a-x\)\(CE'=a\sqrt{3}-y\)

Dễ thấy:  \(\Delta BF'D\approx\Delta DE'C\approx\Delta BAC\)

=> \(BD=2.\left(a-x\right)\)\(DC=\frac{\left(a\sqrt{3}-y\right)}{\sqrt{3}}.2\)

mà BD +DC =BC =2a

=> \(2\left(a-x\right)+\left(a-\frac{y}{\sqrt{3}}\right).2=2a\)

=> \(x+\frac{y}{\sqrt{3}}=a\)

Có diện tích DEF nhỏ nhất <=> D'E'F' nhỏ nhất <=> E'F' nhỏ nhất

=> \(E'F'^2=x^2+y^2=\frac{3}{4}\left(1^2+\frac{1}{3}\right)\left(x^2+y^2\right)\ge\frac{3}{4}\left(x+\frac{y}{\sqrt{3}}\right)^2=\frac{3}{4}.a^2=\frac{3}{4}a^2\)

=> \(E'F'\ge\frac{a\sqrt{3}}{2}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y\sqrt{3}\\x+\frac{y}{\sqrt{3}}=a\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{3}{4}a\\y=\frac{\sqrt{3}}{4}a\end{cases}}\)

=> Vậy vị trí : E cách A khoảng \(\frac{\sqrt{3}}{4}a\); F cách A khoảng \(\frac{3}{4}a\); D cách B khoảng \(2\left(a-\frac{3}{4}a\right)=\frac{a}{2}\)

=> \(S_{\Delta DEF}=\frac{1}{2}DE.DF=\frac{1}{2}AE.AF=\frac{1}{2}x.y=\frac{1}{2}.\frac{3a}{4}.\frac{\sqrt{3}a}{4}=\frac{3\sqrt{3}}{32}a^2\)

29 tháng 10 2019

kết bạn