K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2023

Sửa đề:

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BA = BE. BD là tia phân giác của góc ABC, AH vuông góc với BC. Chứng minh:

a, Tam giác ABD = tam giác EBD

b, AH // DE

Giải

loading...a) Do BD là tia phân giác của ∠ABC (gt)

⇒ ∠ABD = ∠CBD

⇒ ∠ABD = ∠EBD

Xét ∆ABD và ∆EBD có:

BD là cạnh chung

∠ABD = ∠EBD (cmt)

BA = BE (gt)

⇒ ∆ABD = ∆EBD (c-g-c)

b) Do ∆ABD = ∆EBD (cmt)

⇒ ∠BAD = ∠BED (hai góc tương ứng)

⇒ ∠BED = 90⁰

⇒ DE ⊥ BC

Mà AH ⊥ BC (gt)

⇒ AH // DE

10 tháng 12 2023

Để chứng minh a, ta cần chứng minh hai tam giác ABD và EBD có cạnh và góc tương ứng bằng nhau.

 

Vì tam giác ABC vuông tại A, nên ta có góc ABC = 90 độ. Vì BD là tia phân giác của góc ABC, nên ta có góc ABD = góc DBC.

 

Vì BA = BE, và góc ABD = góc DBC, nên ta có hai cạnh và góc tương ứng bằng nhau, theo nguyên tắc cạnh-góc-cạnh (SAS), ta có tam giác ABD = tam giác EBD.

 

Để chứng minh b, ta cần chứng minh hai đường thẳng AH và DE là song song.

 

Vì tam giác ABC vuông tại A, nên ta có góc ABC = 90 độ. Vì BD là tia phân giác của góc ABC, nên ta có góc ABD = góc DBC.

 

Vì tam giác ABD = tam giác EBD (đã chứng minh ở câu a), nên ta có góc ADB = góc EDB.

 

Vì góc ADB = góc EDB và góc ABD = góc DBC, nên theo nguyên tắc góc tương đương, ta có AH // DE.

 

Vậy, ta đã chứng minh được cả hai phần a và b.

26 tháng 2 2020

a, xét  tam giác ABD và tam giác EBD có : BD chung

góc ABD = góc EBD do BD là pg của góc ABC (Gt)

BE = BA (gt)

=> tam giác ABD = tam giác EBD (c-g-c)

b, tam giác ABD = tam giác EBD (câu a)

=> DA = DE (đn)

và góc DAB = góc DEB (đn)

góc DAB = 90

=> góc DEB = 90

=> DE _|_ BC 

=> tam giác DEC vuông tại E (đn)

=> góc CDE + góc BCA = 90 (đl)

tam giác ABC vuông tại A (gt) => góc ABC + góc BCA = 90 (Đl)

=>  góc ABC = góc CDE

c, AH _|_ BC (Gt)

DE _|_ BC (câu b)

=> AH // DE (đl)

26 tháng 2 2020

B H E A D C

Mình vẽ hơi xấu mong bạn thông cảm:)

a) \(\Delta ABD\) và \(\Delta EBD\) có :

\(BE=BA\)

\(\widehat{ABD}=\widehat{EBD}\) ( vì BD là phân giác )

\(BC:\) cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\left(1\right)\)

b) Từ ( 1 ) => \(DA=DE\) và \(\widehat{BAD}=\widehat{BED}=90^0\)

Mặt khác , ta có : \(\widehat{ABC}=\widehat{BAC}-\widehat{C}=90^0-\widehat{C}\)

\(\widehat{EDC}=\widehat{DEC}-\widehat{C}=90^0-\widehat{C}\)

\(\Rightarrow\widehat{ABC}=\widehat{EDC}\)

c) Ta có : \(AH\perp BC\)\(DE\perp BC\) ( vì \(\widehat{DEC}=90^0\) ) nên AH//DE

26 tháng 3 2022

Hỏi đáp Toán
 a) 

ΔABDΔABD và ΔEBDΔEBD có:
BA = BE (gt)
ˆB1=ˆB2B1^=B2^ (BD là tia phân giác góc B)
BD là cạnh chung
ΔABD=ΔEBD⇒ΔABD=ΔEBD (c.g.c)

 

 ˆBAD=ˆBEDBAD^=BED^ (hai góc tương ứng)
mà ˆBADBAD^ =900=900
ˆBEDBED^ =900=900
 DE  BE

b) ΔABIΔABI và ΔEBIΔEBI có:
BA = BE (gt)

31 tháng 12 2023

 

e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ  ( 1 ) và ( 2 ) => B, D , M thằng hàng

 

 

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

=>DA=DE và góc BED=góc BAD=90 độ

b; AH vuông góc BC

DE vuông góc BC

=>AH//DE

DD
19 tháng 12 2020

Xét \(\Delta ABD\)và \(\Delta EBD\)có: 

\(AB=EB\)(giả thiết) 

\(\widehat{ABD}=\widehat{EBD}\)(vì \(BD\)là phân giác của \(\widehat{ABC}\))

\(BD\)cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\)(c.g.c) 

\(\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)(Hai góc tương ứng) 

\(\Rightarrow DE\perp BC\).

26 tháng 12 2016

Bạn làm được bài này chưa vậy giúp mình

28 tháng 4 2018

a) Xét tam giác ABD và tam giác EBD có :

AB= BE ( giả thiết )            (1)

Góc B1 = góc B2 ( vì tia BD là tia phân giác )              (2)

BD : cạnh chung             (3)

Từ (1) ;(2) và (3) => tam giác ABD = tam giác EBD ( cạnh - góc - cạnh )

b) Vì tam giác ABD = tam giác EBD ( chứng minh ở câu a)

=> góc BAD = góc BED ( cặp góc tương ứng )

Mà góc BAD = 90 độ 

=> BED = 90 độ

c) Vì góc BED = 90 độ 

=> tam giác BED vuông

d) Vì AH vuông góc với BC ( giả thiết)                (1)

và     DE vuông góc với BC ( giả thiết )                 (2)

Từ (1) và (2) => AH // DE ( điều phải chứng minh).