K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABC\(\sim\)ΔHBA

b: Xét ΔCAI vuông tại A và ΔCHK vuông tại H có

\(\widehat{ACI}=\widehat{HCK}\)

Do đó: ΔCAI\(\sim\)ΔCHK

SUy ra: CA/CH=CI/CK

hay \(CA\cdot CK=CI\cdot CH\)

8 tháng 5 2018

a)  Xét  \(\Delta AHC\)và   \(\Delta DHB\)có:

       \(\widehat{AHC}=\widehat{DHB}=90^0\)

      \(\widehat{HAC}=\widehat{HDB}\)(đối đỉnh)

suy ra:  \(\Delta AHC~\Delta DHB\) (g.g)

b)   Xét   \(\Delta ABC\)và    \(\Delta BDA\)có:

      \(\widehat{BAC}=\widehat{DBA}=90^0\)

     \(\widehat{ABC}=\widehat{BDA}\) (cùng phụ vs góc DBH)

suy ra:   \(\Delta ABC~\Delta BDA\)

\(\Rightarrow\)\(\frac{AB}{BD}=\frac{AC}{AB}\)

\(\Rightarrow\)\(AB^2=BD.AC\)

c)  \(\Delta HAC\)vuông tại  H  có  HN  là đường trung tuyến

\(\Rightarrow\)\(HN=AN=NC\)

\(\Rightarrow\)  \(\Delta NHC\)cân tại  N   \(\Rightarrow\) \(\widehat{NHC}=\widehat{NCH}\)

    Tương tự:   \(\widehat{MBH}=\widehat{MHB}\) 

mà   \(\widehat{MBH}=\widehat{HCN}\)(slt do BM // NC)

\(\Rightarrow\) \(\widehat{MHB}=\widehat{HCN}\)

mà   \(\widehat{HCN}=\widehat{NHC}\) (cmt)

\(\Rightarrow\)\(\widehat{MHB}=\widehat{NHC}\)

\(\Rightarrow\)\(\widehat{MHB}+\widehat{BHA}+\widehat{AHN}\)

    \(=\widehat{BHA}+\widehat{AHN}+\widehat{NHC}=180^0\)

Vậy  M, N, H thẳng hàng

2 tháng 5 2017

kết bạn đi ,rùi mình nói

2 tháng 5 2017

 dung ác quá

19 tháng 10 2020

a) 2 tâm giác vuông có 1 góc nhọn bằng nhau

b) QK=QA suy ra dpcm

31 tháng 5 2023

giải thích rõ hơn về câu b được không ạ

 

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0