K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
26 tháng 8 2022
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
a: BH+CH=BC
=>BC=4+5
=>BC=9(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)(1)
=>\(BA=\sqrt{4\cdot9}=6\left(cm\right)\)
Xét ΔABH vuông tại H có \(cosB=\dfrac{BH}{BA}=\dfrac{4}{6}=\dfrac{2}{3}\)
nên \(\widehat{B}\simeq48^0\)
b: Xét ΔADB vuông tại A có AK là đường cao
nên \(BK\cdot BD=BA^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)
c: Xét tứ giác AKHB có \(\widehat{AKB}=\widehat{AHB}=90^0\)
=>AKHB là tứ giác nội tiếp đường tròn đường kính AB
Tâm O là trung điểm của AB
ủa mới có 2 góc kìa bằng nhau sao lại suy ra AKHB là tứ giác nội tiếp đường tròn đường kính AB vậy ạ