K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

                                    txhcRie.png

a.

Do F là điểm thuộc đường trung trực của EC nên FE=FC(1)

Mặt khác \(\Delta FAK=\Delta FAE\left(c.g.c\right)\) vì \(AB=AE,\widehat{BAF}=\widehat{EAF},FA\) là cạnh chung.

\(\Rightarrow FB=FE\left(2\right)\)

Từ  \(\left(1\right);\left(2\right)\) thì theo tính chất bắc cầu ta có ĐPCM.

b.

Do \(AB=AE;\widehat{BAE}=90^0\Rightarrow\Delta BAE\) vuông cân tại A.

\(\Rightarrow\widehat{AEB}=45^0\Rightarrow\widehat{BEC}=135^0\)

Áp dụng định lý tổng 3 góc trong một tam giác,ta có:

\(\widehat{BEC}+\widehat{BCE}+\widehat{ECB}=180^0\)

\(\Rightarrow\widehat{EBC}=180^0-30^0-135^0=15^0\)
Hạ \(FK\perp AB\),FH là đường trung trực của AC.

Dễ thấy tứ giác KFHA là hình vuông nên FK=FH.

Xét \(\Delta FBK\) và \(\Delta FCH\) có:

\(FC=FB\)

\(FH=FK\)

\(\Rightarrow\Delta FBK=\Delta FCH\left(ch.cgv\right)\Rightarrow\widehat{KFB}=\widehat{HFC}\)

Mà \(\widehat{KFB}+\widehat{BFE}+\widehat{EFH}=90^0\)

\(\Rightarrow\widehat{HFC}+\widehat{BFE}+\widehat{EFH}=90^0\)

\(\Rightarrow\widehat{BFC}\) vuông cân tại F

\(\Rightarrow\widehat{CBF}=45^0\Rightarrow\widehat{EBF}=60^0\)

Tam giác FBE cân tại F có một góc bằng  \(60^0\) nên tam giác đó là tam giác đều.

27 tháng 5 2019

khó vậy

hi 

n

31 tháng 7 2018

B A E C F

F thuộc tia trung trực của CE 

=> FE = FC   (1)

Xét tam giác BAF và tam giác EAF có:

AB = AE

góc BAE = góc EAF

AF:  chung

suy ra: tgiac BAF = tgiac EAF

=> BF = EF  (2)

Từ (1) và (2) suy ra:  FB = FC

hay tgiac BFC cân tại F

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
22 tháng 2 2020

a)Ta có F thuộc tia trung trực của CE

=>FE=FC (1)

Xét tam giác BÀ và tam giác EAF có 

BA=AE (GT)

góc BAF = góc EAF(À là tia phân gics của góc A)

AF là cạnh chung

Do đó tam giácBAF=tam giác EAF (c.g.c)

=>BF=EF( 2 cạnh tương ứng)(2)

Từ (1)và (2) suy ra FC=FB

Suy ra tam giác BFC cân tại F (đpcm)

   

11 tháng 1 2022

sao ko cs câu b