Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) ti lê canh huyen la: 52 + 122 = 132
ta có AB/5 =AC/12 = BC/13 =>AB=20;AC=48;BC=52
5) cac canh bang 20;48 ;52
la tg vuong vi 522 = 482+202.
( giai toan giup bạn )
Bài 3:
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Theo đề, ta có: a/8=b/15
Đặt a/8=b/15=k
=>a=8k; b=15k
Ta có: \(a^2+b^2=51^2\)
\(\Leftrightarrow289k^2=2601\)
=>k=3
=>a=24; b=45
Bài 6:
Xét ΔABC có \(10^2=8^2+6^2\)
nên ΔABC vuông tại A
Refer:
2,
Ta có:AH là đường cao ΔABC
⇒AH ⊥ BC tại H
⇒∠AHB=∠AHC=90°
⇒ΔAHB và ΔAHC là Δvuông H
Xét ΔAHB vuông H có:
AH² + HB²=AB²(Py)
⇔24² + HB²=25²
⇔ HB²=25² - 24²
⇔ HB²=49
⇒ HB=7(đvđd)
Chứng minh tương tự:HC=10(đvđd)
Ta có:BC=BH + CH=7 + 10=17(đvđd)
Theo tỉ lệ ta có: \(\begin{cases}\frac{a}{b}=\frac{3}{4}\\\frac{a}{c}=\frac{3}{5}\\a+b+c=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=\frac{4}{3}a\\c=\frac{5}{3}a\\a+b+c=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=\frac{4}{3}a\\c=\frac{5}{3}a\\a+\frac{4}{3}a+\frac{5}{3}a=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=8\\c=10\\a=6\end{cases}\)
b. Tam giác ABC là tam giác vuông . vì : \(8^2+6^2=10^2\)( đúng với pytago)
a) Theo bài ra ta có:
a/b=3/4 ; b/c=4/5 ; a/c=3/5
=> a/3 = b/4 =c/5 và a+b+c=24
Áp dụng tchat dayc tỉ số bằng nhau ta có
a/3=b/4=c/5 =a+b+c/3+4+5=24/12=2
Vì a/3=2 =>a=6
Vì b/4 =2 => b=8
Vì c/5 =2 => c=10
Vậy...........
.
Gọi độ dài các cạnh BC a
, ,
AC b AB c . Độ dài các đường cao kẻ
từ đỉnh lần lượt là
Aagiác ABC đến các cạnh tỉ lệ với các số ;
3
; nên ta có
,
B
,
C
x
, ,
z
. Khoảng cách từ trọng tâm tam ,x/2=y/3=z/3=k Mặt khác ax by cz 2SABC nên , tự gjaj tjep nha
Gọi các cạnh của tam giác lần lượt là `x,y,z (x,y,z \ne 0)`
Các cạnh của tam giác lần lượt tỉ lệ với `2:4:5`
Nghĩa là: `x/2=y/4=z/5`
Chu vi các cạnh của tam giác là `44 cm`
`-> x+y+z=44`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/4=z/5=(x+y+z)/(2+4+5)=44/11=4`
`=>`\(\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{4}=4\\\dfrac{z}{5}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=4\cdot4=16\\z=4\cdot5=20\end{matrix}\right.\)
Vậy, các cạnh của tam giác lần lượt là `8 cm, 16 cm, 20 cm.`
Đặt AB=a; AC=b
Theo đề, ta có: a/3=b/4
Đặt a/3=b/4=k
=>a=3k; b=4k
Theo đề, ta có: 3k+4k+5k=36
=>12k=36
=>k=3
=>AB=9; AC=12; BC=15
tại sao lại có 5k vậy ạ?