Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
=>EC=EK
=>E nằm trên đường trung trực của CK(1)
Ta có: ΔACE=ΔAKE
=>AC=AK
=>A nằm trên đường trung trực của CK(2)
Từ (1) và (2) suy ra AE là đường trung trực của CK
=>AE\(\perp\)CK
b: Ta có: ΔCAB vuông tại C
=>\(\widehat{CAB}+\widehat{CBA}=90^0\)
=>\(\widehat{CBA}=90^0-60^0=30^0\)
Ta có: AE là phân giác của góc CAB
=>\(\widehat{CAE}=\widehat{BAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)
Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
Ta có: ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
=>KA=KB
c: Ta có: EB=EA
EA>AC(ΔAEC vuông tại C)
Do đó: EB>AC
d: Gọi giao điểm của BD và AC là H
Xét ΔHAB có
AD,BC là các đường cao
AD cắt BC tại E
Do đó: E là trực tâm của ΔHAB
=>HE\(\perp\)AB
mà EK\(\perp\)AB
và HE,EK có điểm chung là E
nên H,E,K thẳng hàng
=>AC,BD,KE đồng quy tại H
C A K B E D
Cm: a) Xét t/giác ACE và t/giác AKE
có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)
AE : chung
\(\widehat{CAE}=\widehat{KAE}\) (gt)
=> t/giác ACE = t/giác AKE (ch - gn)
=> AC = AK ; EC = EK (các cặp cạnh t/ứng)
Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK
+) EC = EK (cmt) => E thuộc đường trung trực của CK
Mà A \(\ne\)E => AE là đường trung trực của CK
=> AE \(\perp\)CK
b) Xét t/giác ABC có góc C = 900
=> \(\widehat{A}+\widehat{ABC}=90^0\)
=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)
Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)
=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E
=> AE = EB
=> AK = KB (quan hệ giữa đường xiên và hình chiếu)
(có thể xét qua 2 t/giác AEK và t/giác BEK)
c) Xét t/giác EKB có góc EKB = 90 độ
=> EB > KB (ch > cgv)
Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)
=> EB > AC
d) Ta có: AC \(\perp\)BC \(\equiv\)C
KE\(\perp\)AB \(\equiv\)K
BD \(\perp\)AD \(\equiv\)D
=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)
A B C E K D 1 2 1
a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)
\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).
b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.
c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).
d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác).
a) Xét ΔACE và ΔAKE có:
\(\widehat{ACE}=\widehat{AKE}=90^0\)
AE chung
\(\widehat{CAE}=\widehat{KAE}\) (AE là tia phân giác \(\widehat{BAC}\) mà K ϵ AB ⇒ AE là tia phân giác \(\widehat{KAC}\) )
⇒ ΔACE = ΔAKE (cạnh huyền - góc nhọn)
⇒ AC = AK (2 cạnh tương ứng)
b) Xét ΔABC có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\) (Tổng 3 góc trong tam giác)
\(60^0+\widehat{ABC}+90^0=180^0\)
\(150^0+\widehat{ABC}=180^0\)
\(\widehat{ABC}=180^0-150^0\)
\(\widehat{ABC}=30^0\)
\(\Rightarrow\widehat{KBE}\left(K\in AB,E\in BC\right)\)
\(\widehat{BAC}=60^0\Rightarrow\widehat{KAC}=60^0\left(K\in AB\right)\)
mà AE là tia phân giác \(\widehat{KAC}\)
\(\Rightarrow\widehat{KAE}=\dfrac{\widehat{KAC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Rightarrow\widehat{KBE}=\widehat{KAE}=30^0\)
Vì ΔKEB và ΔKEA là hai tam giác vuông
⇒ \(\widehat{KEB}+\widehat{KBE}=\widehat{KEA}+\widehat{KAE}=90^0\) (Tổng hai góc nhọn trong tam giác vuông)
\(\Rightarrow\widehat{KEB}=\widehat{KEA}\)
Xét ΔKEB và ΔKEA có:
\(\widehat{BKE}=\widehat{AKE}=90^0\)
AK chung
\(\widehat{KEB}=\widehat{KEA}\)
⇒ ΔKEB = ΔKEA (cạnh góc vuông - góc nhọn kề) ⇒ KB = KA (hai cạnh tương ứng) mà CA = KA ⇒ CA = KB ⇒ CA + CA = KB + KA ⇒ 2AC = AB (đpcm) c) Ta có: \(\widehat{KAE}+\widehat{EAC}=\widehat{KAE}\) (hai góc kề nhau) \(30^0+\widehat{EAC}=60^0\) \(\widehat{EAC}=60^0-30^0\)\(\widehat{EAC}=30^0\)
Vì ΔAEC là tam giác vuông
\(\widehat{AEC}+\widehat{EAC}=90^0\)
\(\widehat{AEC}+30^0=90^0\)
\(\widehat{AEC}=90^0-30^0=60^0\)
\(\Rightarrow\widehat{BKE}>\widehat{AEC}\left(90^0>60^0\right)\)
⇒ EB > AC (quan hệ góc cạnh tam giác)
Em tham khảo câu a, b, c tại đây nhé.
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
d) Ta thấy EB = AE
Mà theo quan hệ giữa đường vuông góc với đường xiên thì AC < AE
Vậy nên AC < EB.
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK và EC=EK
=>AE là đường trung trực của CK
b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
hay EA=EB
Xét ΔACE \ và ΔAKE ta có
cạnh AE chung
\(\widehat{EAC}=\widehat{EAK}\)
=> ΔACE=ΔAKE(c.h-g.n)
=> AC=AK và EC=EK (cặp cạnh - nhau tg ứng)
=>AE là đường trung trực của CK
Xét ΔEAB ta có
\(\widehat{BAE}=\widehat{ABE}\)
=> ΔEAB cân tại E
=>EA=EB