K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

=>BA/BC=BH/BA

=>BA^2=BH*BC

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: Xét ΔCAM có

CK,AH là đường cao

CK cắt AH tại I

=>I là trực tâm

=>MI vuông góc AC

=>MI//AB

Xét ΔHAB có

M là trung điểm của HB

MI//AB

=>I là trung điểm của HA

Bài làm

b) Xét tam giác HAP có:

Q là trung điểm BH

P là trung điểm AH

=> QP là đường trung bình

=> QP // AB 

=> \(\widehat{HQP}=\widehat{QPA}\)

Xét tam giác HQP và tam giác ABC có:

\(\widehat{HQP}=\widehat{QPA}\)

\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)

=> Tam giác HQP ~ Tam giác ABC ( g - g )

=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\)             (1)

Xét tam giác HAB có: 

QP // AB

=> Tam giác HQP ~ HAB 

=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\)             (2)

Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)

Xét tam giác AHC vuông ở H có: 

\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)

Xét tam giác ABC vuông ở A có:

\(\widehat{CBA}+\widehat{BCA}=90^0\)  (4)

Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)

Xét tam giác ABQ và tam giác CAP có:

\(\frac{AB}{AC}=\frac{QB}{PA}\)

\(\widehat{PAC}=\widehat{CBA}\)

=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )

Bài làm

a) Vì AM là trung tuyến

=> M là trung điểm BC 

=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )

Ta có: BH + HM + MC = BC

=> BH + HM + MC = BH + HC

hay 9 + HM + 12,5 = 9 + 16

=> HM = 9 + 16 - 9 - 12,5 

=> HM = 3,5 ( cm )

Vì tam giác ABC là tam giác vuông ở A

Mà AM trung tuyến

=> AM = MC = BM = 12,5 ( cm )

Xét tam giác AHM vuông ở H có:

Theo định lí Pytago có:

AH2 = AM2 - HM2 

hay AH2 = 12,52 - 3,52 

=> AH2 = 156,25 - 12,25

=> AH2 = 144

=> AH = 12 ( cm )

SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )

Xét tam giác AHB vuông ở H có:

Theo định lí Py-ta-go có:

AB2 = BH2 + AH2 

=> AB2 = 92 + 212 

=> AB2 = 81 + 441

=> AB2 = 522

=> AB \(\approx\)22,8 ( cm )

Xét tam giác AHC vuông ở H có: 

Theo định lí Pytago có:

AC2 = AH2 + HC2 

=> AC2 = AH2 + ( HM + MC )2 

hay AC2 = 212 + ( 3,5 + 12,5 )2 

=> AC2 = 441 + 256

=> AC2 = 697

=> AC \(\approx\)26,4 ( cm )

Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )

SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021
Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.a)     Chứng minh tam giác ABK cân tại Bb)    Chứng minh DK vuông góc BCc)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HACd)    Gọi I là giao điểm của AH và BD. Chứng minh IK//ACBài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).a)     So sánh góc ABC và góc ACB. Tính góc...
Đọc tiếp

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

 

1
17 tháng 3 2019

Ngắn nhở -.-