K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

tau mới lp 7

29 tháng 10 2017

a) Áp dụng hệ thức giữa cạnh và góc vào \(\Delta ABC\) vuông tại A đường cao AH ta có:

\(AB^2=HB.BC\)

hay \(AB^2=3,6.\left(3,6+6,4\right)\)

\(\Rightarrow AB^2=3,6.10\)

\(\Rightarrow AB^2=36\)

\(\Rightarrow AB=6\)  ( vì AB > 0 ) ( cm)

\(AC^2=HC.BC\)

HAY \(AC^2=6,4.10\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=8\left(cm\right)\) ( vì \(AC>0\)

\(AH.BC=AB.AC\)

hay \(AH=\frac{AB.AC}{BC}\)

\(\Rightarrow AH=\frac{6.8}{10}\)

\(\Rightarrow AH=4,8\left(cm\right)\)

b) c) mk ko biết làm

14 tháng 6 2016

a, áp dụng hệ thức lượng trong tam giác : AC^2 = HC.BC => AC = căn ( HC.BC) = 8 (cm )

AB^2 = HB.BC  => AB = căn( HB.BC) = 6 ( cm )

AH.BC = AB.AC => AH = AB.AC : BC =4,8(cm)

b, Trong tam giác vuông HAB, đường cao HE ta có : HA^2 = AB.AE (1)

Trong tam giác vuông HAC, đường cao HF ta có : HA^2 = AC.AF  (2)

Từ (1) và (2) ta có :  AB.AE = AC.AF  ( = AH^2)  ( đpcm)

Hình em tự vẽ nhé 

1: Xét ΔABH vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

2: \(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2\)

4: \(4\cdot OE\cdot OF=2OE\cdot2OF=FE\cdot AH=AH^2\)

\(HB\cdot HC=AH^2\)

Do đó: \(4\cdot OE\cdot OF=HB\cdot HC\)

29 tháng 8 2015

a) Tam giác ABH vuông tại H, HE là đường cao

\(\Rightarrow AH^2=AE.AB\)(1)

Tam giác AHC vuông tại H, HF là đường cao

\(\Rightarrow AH^2=AF.AC\)(2)

từ (1) và (2) nên AE.AB=AF.AC(đpcm)

b) Tam giác ABC vuông tại A, AH là đường cao

\(\Rightarrow AB^2=BH.BC\)(3)

Tam giác BIC vuông tại B, BA là đường cao

\(\Rightarrow AB^2=IA.IC\) mà theo (3) thì \(BH.BC=IA.IC\left(\text{đ}pcm\right)\)

c) Tam giác ABC vuông tại A, đường cao AH

\(AH^2=BH.CH\Leftrightarrow AH^2=9.16=144\Leftrightarrow AH=12\)(cm)

BC=9+16=25(cm)

Tam giác ABC vuông tại A, AH là đường cao

\(AB^2=BH.BC=9.25=225\Leftrightarrow AB=15\)

\(AC^2=CH.BC=16.25=400\Leftrightarrow AC=20\)

Tam giác ABC có AD là phân giác

\(\frac{AB}{AC}=\frac{BD}{CD}\Leftrightarrow\frac{15}{20}=\frac{BD}{CD}\Leftrightarrow\frac{15}{BD}=\frac{20}{CD}=\frac{15+20}{BD+CD}=\frac{35}{25}=\frac{7}{5}\)

\(\Leftrightarrow BD=\frac{15.5}{7}=\frac{75}{7}\)\(\Leftrightarrow DH=BD-BH=\frac{75}{7}-9=\frac{12}{7}\)

Áp dụng định lý Py-ta-go vào tam giác vuông AHD:

\(AD^2=DH^2+AH^2=\frac{144}{49}+144=\frac{7200}{49}\Rightarrow AD=\frac{60\sqrt{2}}{7}\)

d) Tam giác ABC vuông tại A, AH là đường cao

\(AB^2=BH.BC\);\(AC^2=CH.BC\)

\(\Rightarrow\frac{AB^2}{AC^2}=\frac{HB.BC}{CH.BC}=\frac{BH}{CH}\left(\text{đ}pcm\right)\)

Còn câu e chờ mình xíu

 

 

 

 

 

 

 

29 tháng 8 2015

c) Ta sẽ chứng minh bổ đề sau để dễ dàng tính: Cho \(\Delta\)ABC vuông tại A đường phân giác AD. Chứng minh: \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)

C/m: Tự kẻ hình nha .Kẻ DH // AB => DH vuông góc AC. Vì \(\Delta\)ADH vuông tại H có góc DAH=90 nên \(\Delta\)ADH vuông cân tại H

=> \(AD=\sqrt{2}DH\Rightarrow DH=\left(\frac{AD}{\sqrt{2}}\right)\)

Ta có DH // AB => \(\frac{DH}{AB}=\frac{HC}{AC}=\frac{AC-AH}{AC}\) vì (HC=AC-AH)

 

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)