K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2015

a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung 
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn) 
b. Ta có BA = BE (Tam giác = tam giác câu a) 
=> tam giác BAE cân tại B. 
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC. 
d. Xét tam giác ADF và tam giác EDC: 
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt) 
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng) 
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ. 
Vậy E,D,F thẳng hàng.

6 tháng 5 2016

Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)

Ta có 

Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)

      dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)

Vậy , suy ra AE/AD = 1/3

Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)

DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB

DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)

=> AE/AD = 1/3

6 tháng 5 2024

ccccc

DD
20 tháng 7 2021

a) Xét tam giác \(ABD\)và tam giác \(EBD\)có: 

\(AB=EB\)

\(\widehat{ABD}=\widehat{EBD}\)

\(BD\)cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEB}=\widehat{DAB}=90^o\)

do đó \(DE\perp BC\).

\(DE=DA\Rightarrow D\)thuộc đường trung trực của \(AE\).

\(BA=BE\)suy ra \(B\)thuộc đường trung trực của \(AE\).

Do đó \(BD\)là đường trung trực của \(AE\)nên \(AE\)vuông góc với \(BD\).

b) \(AD=DE< DC\)(cạnh góc vuông nhỏ hơn cạnh huyền) 

c) Xét tam giác \(ADF\)và tam giác \(EDC\)có: 

\(DA=DE\)

\(CE=FA\)

\(\widehat{DAF}=\widehat{DEC}\left(=90^o\right)\)

\(\Rightarrow\Delta ADF=\Delta EDC\left(c.g.c\right)\)

d) \(\Delta ADF=\Delta EDC\)suy ra \(\widehat{CDE}=\widehat{ADF}\)mà hai góc này ở vị trí đối đỉnh nên \(E,D,F\)thẳng hàng. 

31 tháng 12 2023

 

e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ  ( 1 ) và ( 2 ) => B, D , M thằng hàng

 

 

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
20 tháng 4 2017

A) Xét tam giác BDA và tam giác BDE có : 

             BD ( chung )

            BE = BA ( giả thiết )

      góc BED = góc BAD =90 độ ( giả thiết )

       suy ra tam giác BDA = tan giác BDE ( cạnh huyền -cạnh góc vuông )

     C) ta gọi giao điểm của đoạn thẳng AE và BD là O

            Xét tam giác AOD và tam giác EOD có :

               EDO=ADE ( hai góc tương ứng )

               OD chung

               AD=ED( hai cạnh tương ứng )

   vậy suy ra : D cách đều hai mút E và A 

   suy ra BD là đường trung trực của AE    

21 tháng 4 2017

a﴿ Xét tam giác BDA và tam giác BDE có :

BD ﴾ chung ﴿ BE = BA ﴾ giả thiết ﴿

góc BED = góc BAD =90 độ ﴾ giả thiết ﴿

suy ra tam giác BDA = tam giác BDE ﴾ cạnh huyền ‐cạnh góc vuông ﴿

c﴿ ta gọi giao điểm của đoạn thẳng AE và BD là O

Xét tam giác AOD và tam giác EOD có :

EDO=ADE ﴾ hai góc tương ứng ﴿

OD chung

AD=ED﴾ hai cạnh tương ứng ﴿

vậy suy ra : D cách đều hai mút E và A

suy ra BD là đường trung trực của AE