K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BPCE có

Q là trung điểm của BC

Q là trung điểm của PE

Do đó: BPCE là hình bình hành

Suy ra: BP=CE

hay CE=AP

b: Ta có: AP//EC
nên \(\widehat{APC}=\widehat{ECP}\)

c: Xét ΔABC có 

P là trung điểm của AB

Q là trung điểm của BC

Do đó: PQ là đường trung bình

=>PQ//AC và PQ=AC/2

8 tháng 5 2017

a)

Xét tam giác vg ABC và tam giác vg ABD

có:AB là cạnh chung

     AD=AC(gt)

->tam giác ABC =tam giác ABD(2 cạnh góc vg)

->BD=BC(2 cạnh tương ứng)

=> tam giác BDC cân tại B

b)

Ta có :CE là dường trung tuyến của BD(BE=ED)

          AB là đường trung tuyến của DB(AD=AC)

          O là trọng tâm của tam giác ABC(O là giao của 2 đường trung tuyến)

->OA=1/3của AB

->OA=1/3.a

c)

để CE vg góc vs BD thì AC =1/2CB(Câu này mik ko chắc chắn lắm nha)

PN GHI ĐỀ SAI RỒI

8 tháng 5 2017

1)

a)Áp dụng định lý py ta go vao tam giác ABC ta có

32+42=25

52=25

->32+42=52

->AB2+AC2=BC2

=>Tam giác ABC vg tại A

b)

ta có :AB đối diện vs góc C

         AC"      "     "    "    B

         BC "    "      "    "     A

mà BC>AC>AB(5>4>3)

     =>góc A>góc B >góc C

(đề 2 có gì đó sai sai bn ơi)

25 tháng 3 2020

Mình không vẽ hình, bạn tự vẽ nhé!

a) M là trung điểm của BC \(\Rightarrow BM=MC\)

Xét \(\Delta BAM\)và \(\Delta CDM\)có:

MA=MD ( giả thiết )

\(\widehat{BMA}=\widehat{CMD}\)( tính chất đối đỉnh )

BM=MC ( chứng minh trên )

\(\Rightarrow\Delta BAM=\Delta CDM\)( c.g.c )

b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:

MA=MD ( giả thiết )

\(\widehat{BMD}=\widehat{CMA}\)( tính chất đối đỉnh )

BM=MC ( chứng minh trên )

\(\Rightarrow\Delta ACM=\Delta DBM\)( c.g.c )

\(\Rightarrow AC=BD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{MAC}=\widehat{MDB}\)(  2 góc tương ứng ) ở vị trí so lê trong

\(\Rightarrow\)AC//BD

c) Đề bài không rõ ràng mình không làm được

d) Đề bài không rõ ràng mình không làm được

Chúc bạn học tốt!

23 tháng 3 2020

các bạn ơi, mình cần gấp, vẽ hình giúp mình nhé

24 tháng 11 2018

A B C E D 1 2 1 2 3

a) xét \(\Delta ABE\)và \(\Delta DCE\)ta có:

AE=ED(gt)

BE=EC(E là trug điểm của BC)

\(\widehat{E1}=\widehat{E2}\)(đối đỉnh)

=> \(\Delta ABE\)\(\Delta DCE\)(c.g.c)

b) từ câu a => \(\widehat{B1}=\widehat{C2}\)(cặp góc tương ứng)

mà hai góc đó ở vị trí so le trong => AB//DC (bn viết sai đề DE)

c) xét \(\Delta ABE\)và \(\Delta ACE\)ta có:

AE là cạnh chung

AB=AC(gt)

BE=EC(E là trug điểm của BC)

=> \(\Delta ABE\)=\(\Delta ACE\)(c.c.c)

=> \(\widehat{E1}=\widehat{E3}\)(cặp góc t/ứng) 

mà \(\widehat{E1}+\widehat{E3}=180^o\Rightarrow2\widehat{E1}=180^o\Rightarrow\widehat{E1}=90^o\)

=> AE vuông góc với BC (đpcm)

p/s: tớ làm 1 bài thui nha :)) dài quá

28 tháng 11 2018

Để tui bài 2!

BEQJQxI.png

a) Xét tam giác AKB và tam giác AKC có: 

\(AB=AC\) (gt)

\(BK=CK\) (do K là trung điểm BC)

\(AK\) (cạnh chung)

Do đó \(\Delta AKB=\Delta AKC\) (1)

b) \(\Delta AKB=\Delta AKC\Rightarrow\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)

Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) (Kề bù)

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{\widehat{AKB}}{1}=\frac{\widehat{AKC}}{1}=\frac{\widehat{ABK}+\widehat{AKC}}{1+1}=\frac{180^o}{2}=90^o\)

Suy ra AK vuông góc với BC  (2)

c)\(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}=45^o\) (Do  \(\widehat{KAB} +\widehat{KAB}=90^o\) và \(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}\))

Mà \(\widehat{AKC}=90^o\) (CMT câu b)

Suy ra \(\widehat{KCA}=180^o-\widehat{KAC}-\widehat{AKC}=180^o-45^o-90^o=45^o\)

Mà \(\widehat{KCA}+\widehat{ACE}=90^o\) (gt,khi vẽ đường vuông góc BC cắt AB tại E)

Suy ra \(\widehat{ACE}=90^o-\widehat{KCA}=90^o-45^o=45^o\)

Hay \(\widehat{KCA}=\widehat{ACE}=45^o\).Mà hai góc này ở vị trí so le trong,nên: \(EC//AK\) (3)

Từ (1),(2) và (3) ta có đpcm.

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

=>AB=DC

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM\(\perp\)BC

mà M\(\in\)AD

nên AD\(\perp\)BC

c: Ta có: AB=CD

AB=AC

Do đó: CD=CA

=>ΔCDA cân tại C

=>\(\widehat{CAD}=\widehat{CDA}=30^0\)

Ta có: ΔABC cân tại A

mà AD là đường cao

nên AD là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{CAD}=60^0\)

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)