K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2023

B A C M D E M' a)MD vuông góc với AB --> ^MDA=90 độ

ME vuông góc với AC --> ^MEA=90 độ

Mà ^DAE=90 độ => ADME là hình chữ nhật

Tam giác BDM vuông có ^DMB = 45 độ

=> DM=DB

=>Pdme= 2(DM+DA)=2(DB+DA)=2AB=2AC=8(cm)

b) Gọi M' là chân đường cao hạ từ A xuống BC

Ta có: DE=AM ( ADME là hình chữ nhật)

Mà AM≥AM' (Theo tính chất đường xiên)

=> DEmin khi M là chân đường cao hạ từ A xuống BC

23 tháng 5 2018

a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có

BC^2=AB^2+AC^2

=>BC^2=4^2+3^2

=>BC^2=16+9=25

=>BC=căn25=5 (cm)

vậy,BC=5cm

b)Xét tam giác ABC và AED có

AB=AE(gt)

 là góc chung

AC=AD(gt)

=>tam giác ABC=tam giác AED(c-g-c)

Xét tam giác AEB có:Â=90*;AE=AB

=>tam giác AEB vuông cân tại A

Vậy tam giác AEB vuông cân

c)Ta có EÂM+BÂM=90*

      mà BÂM+MÂB=90*

=>EÂM=MÂB

mà MÂB=AÊD(cm câu b)

=>EÂM=AÊD hay EÂM=AÊM

xét tam giác EAM có: EÂM=AÊM(cmt)

=>tam giác EAM cân tại M

=>ME=MA                  (1)

Ta có góc ACM+CÂM=90*

mà BÂM+CÂM=90*

=>góc ACM=BÂM

mà góc ACM=góc ADM( cm câu b)

=>góc ADM=DÂM

Xét tam giác MAD có góc ADM=DÂM(cmt)

=>tam giác ADM cân tại M

=>MA=MD                   (2)

 Từ (1) và (2) suy ra MA=ME=MD

ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền

=>MA=1/2ED

=>MA là đg trung tuyến ứng với cạnh ED

Vậy MA là đg trung tuyến của tam giác ADE

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

9 tháng 5 2016

áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\)

\(BC^2-AB^2=AC^2\)

\(15^2-9^2=AC^2\)

\(144=AC^2\)

\(AC=12\)(cm)

b)Có BC<AC<AB

=>A<B<C

c) xét tam giác CAB và tam giác CAD có :

CA chung

DA=AB

 góc CAB= gócCAD=90 độ

=>tam giác CAB=tam giác CAD(2 cạnh góc vuông)

=>CB=CD(2 cạnh tương ứng )

=>tam giác BCD cân

d) vì  A là trung điểm BD=>DA=DB=>CA là đường trung tuyến DB (1)

có K là trung điểm cạnh BC=>KB=KC=\(\frac{1}{2}\)BC=\(\frac{15}{2}\)=7,5 (cm) (2)

Từ (1) và(2)=>CA =CK=7,5(cm)(trong 1 tam giác vuông đường trung tuyến bằng 1 nửa cạnh huyền)

Từ (1) =>CM=\(\frac{2}{3}\)CA

         =>CM=\(\frac{2}{3}\times7,5\)

        =>CM=5(cm) 

20 tháng 3 2018

xem trên mạng

26 tháng 4 2021

Chưa chắc đã có mà xem