Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a. (Tự vẽ hình)
Áp dụng định lí Py-ta-go, ta có:
BC2= AB2 + AC2
<=> BC2= 62 + 82
<=> BC2= 100
=> BC = 10 (cm)
Bài 1
b. Áp dụng định lí Py-ta-go, ta có:
AC2 = AH2 + HC2
<=> 82 = 4,82 + HC2
<=> 64 = 23,04 + HC2
=> HC2 = 64 - 23,04
=> HC2 = 40,96
=> HC = 6,4 (cm)
=> HB = BC - HC = 10 - 6,4 = 3,6 (cm)
Giải
a) Áp dụng định lí Pytago ta có:
BC=√AB2+AC2
<=> BC= √42+42
<=>BC=4√2(cm)
b) Ta có: AD là đường cao đồng thời là đường trung tuyến ứng với cạnh huyền BC của tam giác ABC
<=>DB=DC
Hay D là trung điểm của BC
c) Áp dụng hệ thức lượng trog tam giác có:
AB.AC=BC,AD
<=>4.4=4√2.AD
<=>AD= 2√2(cm)
Ta có: DC=4√22=2√2(cm)
Vì AD=DC nên tam giác ADC là tam giác vuông cân tại D
Ta có: AC=4(cm) (Áp dụng định lí Pytago trong tam giác ADC)
AE= 42=2(cm) (DE là đường cao đồng thời là trung tuyến của tam giác ADC)
Áp dụng hệ thức lượng ta có: DE=2√2.2√24=2(cm)
Do AE=DE mà góc AED bằng 90 độ
Nên tam giác AED vuông cân tại E
d) Câu trên tớ đã tính AD= 2√2(cm)
Mình giải hơi tắt 1 tí. Bạn thông cảm nhé. :)))
Mình làm phần d) thôi nhé!
Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:
Tam giác ABI = Tam giác ACI)
mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)
=>\(\widehat{AIB}=\widehat{AIC}=90\)
Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:
\(AB^2=AI^2+BI^2\)(1)
Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:
\(AI^2=AD^2+DI^2\)(2)
Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:
\(BI^2=DI^2+BD^2\)(3)
Thay (2),(3) vào (1) ta có được:
\(AB^2=AD^2+DI^2+DI^2+BD^2\)
(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)
a, xet tam giac ABD va tam giac ACD co : AD chung
AB = AC do tam giac ABC can tai A (gt)
goc BAD = goc CAD do AD la phan giac cua goc A (gt)
=> tam giac ABD = tam giac ACD (c - g - c)
=> BD = CD (dn)
xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...
goc B = goc C do tam giac ABC can tai A(gt)
=> tam giac BED = tam giac CFD (ch - gn)
=> DE = DF (dn)
b, cm o cau a
c, tam giac ABD = tam giac ACD (cau a)
=> goc ADC = goc ADB (dn)
goc ADC + goc ADB = 180 (kb)
=> goc ADC = 90
co DB = DC (cau a)
=> AD la trung truc cua BC (dn)
a. Xét tam giác ABD và tam giác ACD
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AD : cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.g.c )
b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
CD = BC : 2 = 12 : 2 =6cm
c.áp dụng định lý pitago vào tam giác vuông ADC
\(AC^2=AD^2+DC^2\)
\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
d.Xét tam giác vuông BDE và tam giác vuông CDF có:
AD = CD ( gt )
góc B = góc C
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
=> tam giác DEF cân tại D
a) Tam giác ABD và tam giác ACD có:
BD = CD (Vì D là trung điểm của BC)
góc B = góc C
(vì tam giác ABC cân tại A)
AB = AC
Do đó: am giác ABD = tam giác ACD (c.g.c)
Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)
b) Vì góc ADB = góc ADC (cmt) mà góc ADB + góc ADC 180 độ (2 góc kề bù)
nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC
c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)
mà BC = 12 cm
=> CD = 12 /2 = 6 cm
Vì AD vuông góc với BC nên tam giác ADC vuông tại D
=> AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)
=> 10^2 = AD ^ 2 + 6 ^2
=> AD^2 = 64
=> AD = 8 (cm) (vì AD > 0 )
d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé
=> DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)
a, xét tam giác DEB và tam giác DFC có : góc BED = góc DFC = 90
BD = DF do D là trung điểm của BC (gt)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> tam giác DEB = tam giác DFC (ch-gn)
b, tam giác DEB = tam giác DFC (Câu a)
=> DE = DF (đn)
xét tam giác ADE và tam giác ADF có : AD chung
góc AED = tam giác AFD = 90
=> tam giác ADE = tam giác ADF (ch-cgv)
c, tam giác ADE = tam giác ADF (câu b)
=> góc BAD = góc CAD (đn)
AD nằm giữa AB và AC
=> AD là phân giác của góc BAC (Đn)
A B C D E F
( Hình vẽ không được chính xác lắm mong bạn thông cảm )
a) Ta có \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) ( tính chất )
Do \(D\) là trung điểm của BC
\(\Rightarrow BD=CD=\frac{BC}{2}\)
Xét \(\Delta DEB\) và \(\Delta DFC\) có :
\(\hept{\begin{cases}\widehat{DEB}=\widehat{DFC}\left(=90^o\right)\\BD=CD\left(cmt\right)\\\widehat{EBD}=\widehat{FCD}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\)\(\Delta DEB\)\(=\)\(\Delta DFC\) ( cạnh huyền - góc nhọn )
b) Do \(\Delta DEB=\Delta DFC\left(cmt\right)\)
\(\Rightarrow DE=DF\)
Xét \(\Delta AED\) và \(\Delta AFD\) có :
\(\hept{\begin{cases}\widehat{DEA}=\widehat{DFA}\left(=90^o\right)\\ADchung\\DE=DF\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta AED=\Delta AFD\) ( cạnh huyền - cạnh góc vuông )
c) Từ \(\Rightarrow\Delta AED=\Delta AFD\) (cmt)
\(\Rightarrow\widehat{EAD}=\widehat{FAD}\Rightarrow\widehat{BAD}=\widehat{CAD}\)
\(\Rightarrow AD\) là tia phân giác của \(\widehat{BAC}\)