Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A có AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA=góc BAH
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc EAM+góc AED
=góc AHD+góc MCA
=góc ABC+góc MCA=90 độ
=>AM vuông góc ED
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=CM
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
Suy ra: \(\widehat{MAC}=\widehat{BCA}\)
hay \(\widehat{BAH}=\widehat{MAC}\)
a) \(\Delta ABC\)vuông tại A có trung tuyến AM (gt) \(\Rightarrow AM=\frac{BC}{2}\)(1)
Mà M là trung điểm BC nên \(MC=\frac{BC}{2}\)(2)
Từ (1) và (2) \(\Rightarrow AM=CM\left(=\frac{BC}{2}\right)\)\(\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow\widehat{MAC}=\widehat{C}\)
Vì \(\Delta ABC\)vuông tại A nên \(\widehat{B}+\widehat{C}=90^0\Rightarrow\widehat{C}=90^0-\widehat{B}\)(3)
Do AH là đường cao của \(\Delta ABC\)nên \(\Delta ABH\)vuông tại H \(\Rightarrow\widehat{BAH}+\widehat{B}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{B}\)(4)
Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{BAH}\left(=90^0-\widehat{B}\right)\)
Lại có \(\widehat{MAC}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{BAH}=\widehat{MAC}\)(đpcm)
b) Vì \(HD\perp AB\)tại D(gt) nên HD là đường cao của \(\Delta ABH\)
Xét \(\Delta ABH\)vuông tại H có đường cao HD \(\Rightarrow AH^2=AD.AB\left(htl\right)\)(5)
Chứng minh tương tự, ta có \(AH^2=AE.AC\)(6)
Từ (5) và (6) \(\Rightarrow AD.AB=AE.AC\Rightarrow\frac{AD}{AC}=\frac{AE}{AB}\)
Xét \(\Delta AED\)và \(\Delta ABC\)có \(\frac{AD}{AC}=\frac{AE}{AB}\left(cmt\right);\)\(\widehat{A}\)chung
\(\Rightarrow\Delta AED~\Delta ABC\left(c.g.c\right)\)\(\Rightarrow\widehat{AED}=\widehat{ABC}\)\(\Rightarrow\widehat{AEK}=\widehat{B}\)(hiển nhiên) (7)
Mặt khác \(\widehat{MAC}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{EAK}=\widehat{C}\)(hiển nhiên) (8)
Từ (7) và (8) \(\Rightarrow\widehat{AEK}+\widehat{EAK}=\widehat{B}+\widehat{C}\)
Mà \(\widehat{B}+\widehat{C}=90^0\left(cmt\right)\Rightarrow\widehat{AEK}+\widehat{EAK}=90^0\)
\(\Delta AEK\)có \(\widehat{AEK}+\widehat{EAK}=90^0\left(cmt\right)\Rightarrow\Delta AEK\)vuông tại K \(\Rightarrow AK\perp EK\)tại K
\(\Rightarrow AM\perp DE\)tại K (hiển nhiên) và ta có đpcm.
c) Dễ thấy \(BC=BH+CH=4,5+8=12,5\)
\(\Delta ABC\)vuông tại A, đường cao AH \(\Rightarrow\hept{\begin{cases}AH^2=BH.CH=4,5.8=36\Rightarrow AH=6\\AB^2=BH.BC=4,5.12,5=56,25\Rightarrow AB=7,5\\AC^2=CH.BC=8.12,5=100\Rightarrow AC=10\end{cases}}\)
Và \(AC^2=CH.BC=8.12,5=100\Rightarrow AC=10\)
Dễ thấy tứ giác ADHE là hình chữ nhật \(\Rightarrow AH=DE\), mà \(AH=6\Rightarrow DE=6\)
Lại có \(\Delta AED~\Delta ABC\left(cmt\right)\Rightarrow\frac{AE}{AB}=\frac{AD}{AC}=\frac{DE}{BC}\)(*)
Thay \(AB=7,5;AC=10;BC=12,5;DE=6\)vào (*), ta có: \(\frac{AE}{7,5}=\frac{AD}{10}=\frac{6}{12,5}=\frac{12}{25}\)
\(\Rightarrow\hept{\begin{cases}AE=\frac{12.7,5}{25}=3,6\\AD=\frac{10.12}{25}=4,8\end{cases}}\)
\(\Delta ADE\)vuông tại A, đường cao AK (vì \(AK\perp DE\)tại K theo cmt)
\(\Rightarrow AK.DE=AD.AE\left(htl\right)\)\(\Rightarrow AK=\frac{AD.AE}{DE}=\frac{3,6.4,8}{6}=2,88\)
Vậy AK = 2,88
a: BC=BH+CH
=2+8
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>DE=AH
c: ΔHDB vuông tại D
mà DM là đường trung tuyến
nên DM=HM=MB
\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)
\(=\widehat{EAH}+\widehat{MHD}\)
\(=90^0-\widehat{C}+\widehat{C}=90^0\)
=>DE vuông góc DM
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-37^0=53^0\)
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB=BC/2
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)
\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)
c: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABC}\)
\(\widehat{AFE}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>FE vuông góc AM tại K
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(HA^2=AE\cdot AB\)
=>\(AE\cdot6=4,8^2\)
=>\(AE=3,84\left(cm\right)\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)
Xét ΔAEF vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)
=>AK=2,304(cm)
mình định chụp rồi gửi cho bạn mà ko được