Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé
a/ xét tam giác AEC và tam giác AFB ta có :
A là góc chung
góc AEC = góc AFB (=90 độ )
=> tam giác AEC ~ tam giác AFB (g.g)
b) vì tam giác AEC ~ tam giác AFB ( cmt)
=> AE/AF=AC/AB => AE*AB = AF*AC
c) xét tam giác BDH và tam giác BFC ta có :
góc B chung
góc BDH = góc BFC (=90 độ)
=> tam giác BDH ~ tam giác BFC (g.g)
=>BH/BC=BD/BF => BH*BF=BC*BD (1)
xét tam giác CHD và tam giác CBE ta có :
C là góc chung
góc CDH = góc CEB (=90 độ )
=> tam giác CHD ~ tam giác CBE (g.g)
=> CH/CB= CD/CE => CH*CE=CB*CD (2)
từ (1) và (2) => BH.BF +CH.CE= BC.BD+ CB.CD = BC ( BD +CD)= BC.BC= BC2
=> BH.BF+CH.CE=BC2 (đpcm)
d) xét tam giác AEH và tam giác AMD ta có :
A là góc chung
góc AEH = góc AMD (= 90 độ )
=> t/g AEH ~t/g AMD (g.g)=> AE/AM=AH/AD (3)
xét t/ g AFH và AND ta có :
A là góc chung
góc AFH = góc AND (=90 độ )
=> t/g AFH ~ t/g AND (g.g) => AF/AN=AH/AD (4)
từ (3) và (4) => AE/AM=AF/AN
=> EF // MN hay MN//EF ( định lý Ta - lét đảo )
Giải:
a) Xét \(\Delta\)ADF và \(\Delta\)EDC có:
^DAF = ^DEC = 90 độ
^ADF = ^EDC ( đối đỉnh )
=> \(\Delta\)ADF ~ \(\Delta\)EDC ( g-g)
=> AD/DE = DF/DC
=> AD.DC = DE.DF
b) Xét \(\Delta\)BEF và \(\Delta\)DEC
có: ^BEF = ^DEC = 90 độ
^BFE = ^ECD ( theo (a) )
=> \(\Delta\)BEF~ \(\Delta\)DEC
=> BE/EF = DE/EC => BE.EC= DE/EF
c) BA.BF + DC.AC
=BA(BA + AF) + ( AC - AD ) DC
= AB^2 + AC^2 + ( BA.AF - AD.DC)
Dễ cm \(\Delta\)ADF ~ \(\Delta\)ABC
=> AD/AB = AF / AC
=> AD.AC = AB .AF
=> AD.AC - AB .AF =0
Vậy BA.BF + DC.AC = AB^2 + AC^2 =BC^2