K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Để cm ˆACE=BCF^, ta gấp đôi các góc trên bằng cách vẽ H đối xứng với E qua AC, vẽ K đối xứng với F qua BC. Cần phải cm ˆHCE=FCK^. Muốn vậy ta sẽ cm ˆHCF=ECK^ bằng cách cm △HCF=△ECK
2 tam gíác này đã có HC=EC, CF=CK. Cần cm FH=KE.
Ta tạo ra 1 đoạn thẳng trung gian: Vẽ I đối xứng với E qua AB. Lần lượt cm:
△FAH=△FAI(c-g-c) suy ra FH=FI, △IBF=△EBK(c-g-c) suy ra FI=EK

7 tháng 11 2016

Để cm ˆACE=BCF^, ta gấp đôi các góc trên bằng cách vẽ H đối xứng với E qua AC, vẽ K đối xứng với F qua BC. Cần phải cm ˆHCE=FCK^. Muốn vậy ta sẽ cm ˆHCF=ECK^ bằng cách cm △HCF=△ECK
2 tam gíác này đã có HC=EC, CF=CK. Cần cm FH=KE.
Ta tạo ra 1 đoạn thẳng trung gian: Vẽ I đối xứng với E qua AB. Lần lượt cm:
△FAH=△FAI(c-g-c) suy ra FH=FI, △IBF=△EBK(c-g-c) suy ra FI=EK

MB=1/4AB nên AM=3/4AB

Xét ΔABC có 

BM/BA=CN/CA

nên MN//BC

Xét ΔABC có MN//BC

nên MN/BC=AM/AB

=>MN/a=3/4

hay MN=3/4a

16 tháng 7 2016

Hãy giúp mình với các bạn ơi mình cần gấp lắm

                   Cảm ơn trước nhévui

10 tháng 12 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{x}{1+y+xz}=\frac{x\left(x^2+y+\frac{z}{x}\right)}{\left(1+y+xz\right)\left(x^2+y+\frac{z}{x}\right)}\le\frac{x^3+xy+z}{\left(x+y+z\right)^2}\)

\(\le\frac{x+y+z}{\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Tương tự ta cũng có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z};\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)

Cộng theo vế ta có: \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{1+1+1}{x+y+z}=\frac{3}{x+y+z}\)

 

11 tháng 12 2016

ff